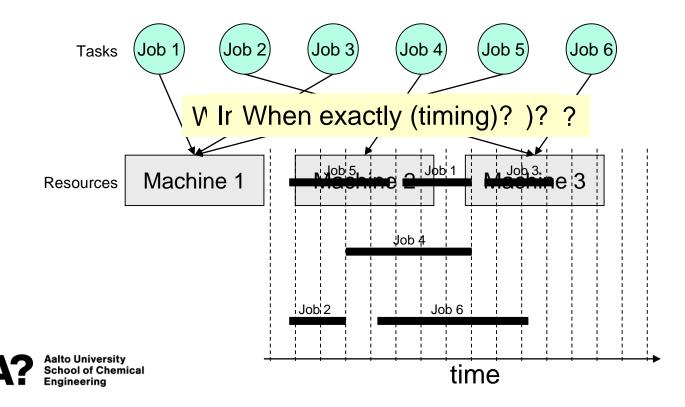
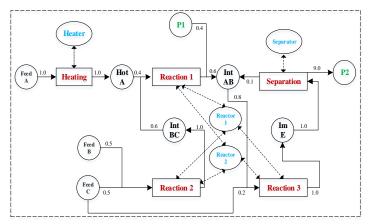
An MILP Approach for Short-term Scheduling of Batch Operations

Hossein Mostafaei (<u>hossein.mostafaei@aalto.fi</u>) Iiro Harjunkoski (<u>liro.harjunkoski@aalto.fi</u>)


Date: Wednesday, 19th June 2019

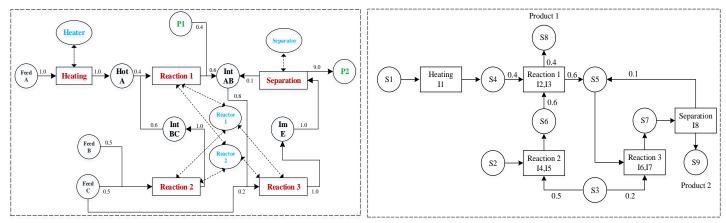
Aalto University School of Chemical Engineering


Scheduling \rightarrow 3 Key-decisions

Introduction

Batch Plant Scheduling

- Optimal allocation of a set of limited resources to some tasks over time
- Generic representations of batch process: Resource-Task Network (Pantelides, 1994) and State-task Network (Kondili et al., 1993)

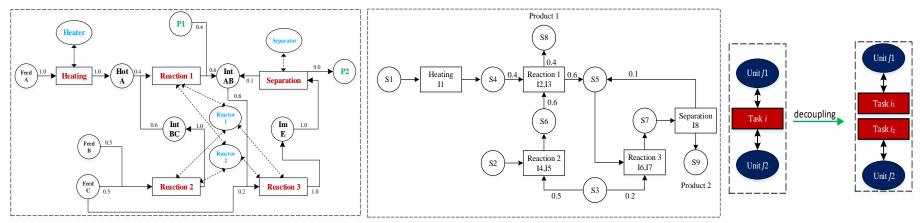

Resource-Task Network

Introduction

Batch Plant Scheduling

- Optimal allocation of a set of limited resources to some tasks over time
- Generic representations of batch process: Resource-Task Network (Pantelides, 1994) and State-task Network (Kondili et al., 1993)

Resource-Task Network

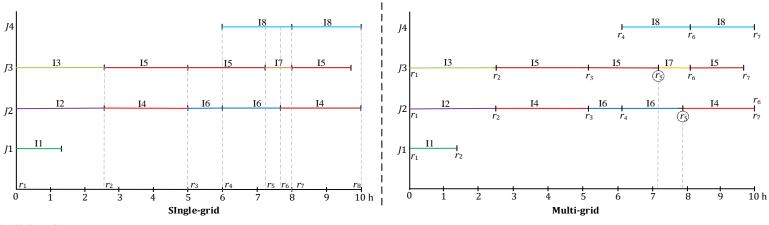


State-Task Network

Introduction

Batch Plant Scheduling

- Optimal allocation of a set of limited resources to some tasks over time
- Generic representations of batch process: Resource-Task Network (Pantelides, 1994) and State-task Network (Kondili et al., 1993)

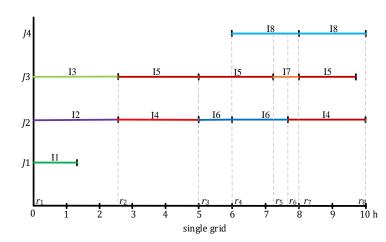

Resource-Task Network

State-Task Network

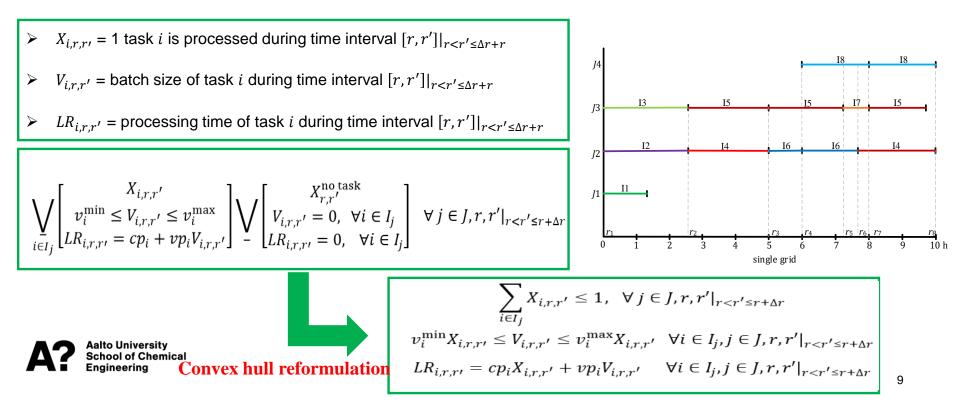
Time representation

- Common reference grid (Single-grid, SG)
 - The time slots are common for all units
- Non-common reference grid (Multiple-grid, MG)
 - The occurrences of each event can vary across the units

Batch size and processing time

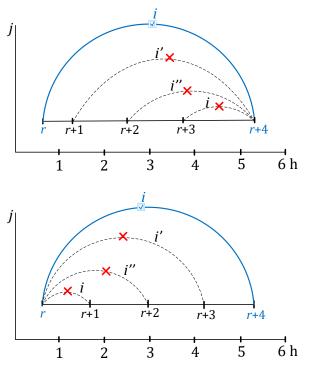

- > $X_{i,r,r'} = 1$ task *i* is processed during time interval $[r, r']|_{r < r' \le \Delta r + r}$
- ► $V_{i,r,r'}$ = batch size of task *i* during time interval $[r,r']|_{r < r' \le \Delta r + r}$
- > $LR_{i,r,r'}$ = processing time of task *i* during time interval $[r,r']|_{r < r' \le \Delta r + r}$

Batch size and processing time


- > $X_{i,r,r'} = 1$ task *i* is processed during time interval $[r, r']|_{r < r' \le \Delta r + r}$
- ► $V_{i,r,r'}$ = batch size of task *i* during time interval $[r,r']|_{r < r' \le \Delta r + r}$
- > $LR_{i,r,r'}$ = processing time of task *i* during time interval $[r,r']|_{r < r' \le \Delta r + r}$

$$\bigvee_{i \in I_j} \begin{bmatrix} X_{i,r,r'} \\ v_i^{\min} \le V_{i,r,r'} \le v_i^{\max} \\ LR_{i,r,r'} = cp_i + vp_iV_{i,r,r'} \end{bmatrix} \bigvee_{-} \begin{bmatrix} X_{r,r'}^{\operatorname{no} \operatorname{task}} \\ V_{i,r,r'} = 0, \quad \forall i \in I_j \\ LR_{i,r,r'} = 0, \quad \forall i \in I_j \end{bmatrix} \quad \forall j \in J, r, r'|_{r < r' \le r + \Delta r}$$

Batch size and processing time



Allocation constraints

• For each unit only one task can start and finish at each time point

$$\bigvee_{i \in I_j} \bigvee_{\substack{r' \in R \\ r < r' \le r + \Delta r}} X_{i,r,r'} \quad \bigvee_{-} X_{r,r'}^{no i} \quad \forall j \in J, r \in R$$

$$\bigvee_{i \in I_j} \bigvee_{\substack{r \in R \\ r < r' \le r + \Delta r}} X_{i,r,r'} \quad \bigvee_{-} X_{r,r'}^{no i} \quad \forall j \in J, r' \in R$$

5

r+4

r+4

5

6 h

6 h

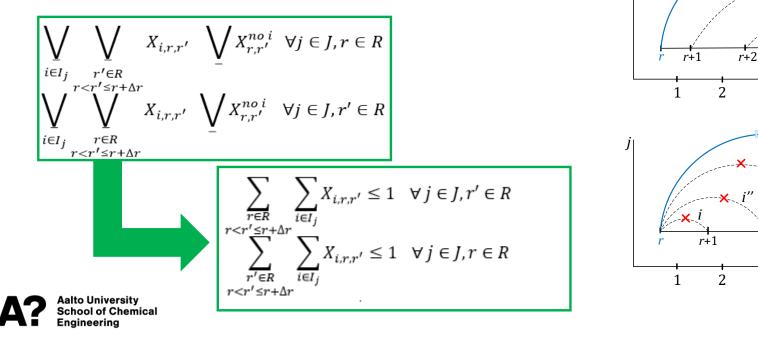
 $\dot{r+3}$

4

r+3

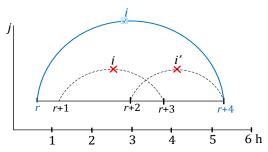
4

3


r+2

3

Common constraints for SG and MG

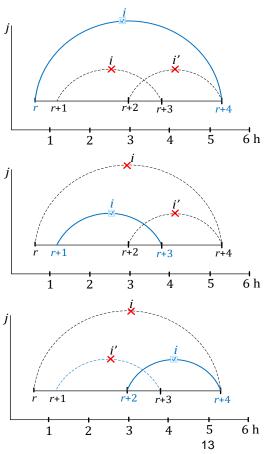

Allocation constraints

· For each unit only one task can start and finish at each time point

Allocation constraints

• Task *i* is processed in unit *j* during time interval $[r, r']|_{r+1 < r' \le r+\Delta r}$, the same or other tasks suitable in unit *j* cannot be processed in any time interval $[k, r''] \subseteq [r, r']$

$$X_{i,r,r'} \Rightarrow \neg \left(\bigvee_{\substack{r'' \in R \\ k < r'' \le k + \Delta r}} X_{i',k,r''} \right) \quad \forall i, i' \in I_j, r, r', k \in R|_{r+1 < r' \le r + \Delta r, r+1 \le k, r' \ge k+1} X_{i,r,r'} + \sum_{k < r'' \le k + \Delta r} X_{i',k,r''} \le 1 \qquad \forall i, i' \in I_j, r, r', k \in R|_{r+1 < r' \le r + \Delta r, r+1 \le k, r' \ge k+1} X_{i',k,r''} \le 1$$



Allocation constraints

• Task *i* is processed in unit *j* during time interval $[r, r']|_{r+1 < r' \le r+\Delta r}$, the same or other tasks suitable in unit *j* cannot be processed in any time interval $[k, r''] \subseteq [r, r']$

$$\begin{aligned} X_{i,r,r'} & \Longrightarrow \neg \left(\bigvee_{\substack{r'' \in R \\ k < r'' \le k + \Delta r}} X_{i',k,r''} \right) \quad \forall i, i' \in I_j, r, r', k \in R|_{r+1 < r' \le r + \Delta r, r+1 \le k, r' \ge k+1} \\ X_{i,r,r'} + \sum_{k < r'' \le k + \Delta r} X_{i',k,r''} \le 1 \qquad \forall i, i' \in I_j, r, r', k \in R|_{r+1 < r' \le r + \Delta r, r+1 \le k, r' \ge k+1} \end{aligned}$$

Aalto University School of Chemical Engineering

Allocation constraints

• Task *i* is processed in unit *j* during time interval $[r, r']|_{r+1 < r' \le r+\Delta r}$, the same or other tasks suitable in unit *j* cannot be processed in any time interval $[k, r''] \subseteq [r, r']$

$$\begin{split} X_{i,r,r'} & \Longrightarrow \neg \left(\bigvee_{\substack{r'' \in R \\ k < r'' \le k + \Delta r}} X_{i',k,r''} \right) \quad \forall i, i' \in I_j, r, r', k \in R|_{r+1 < r' \le r + \Delta r, r+1 \le k, r' \ge k+1} \\ X_{i,r,r'} + \sum_{k < r'' \le k + \Delta r} X_{i',k,r''} \le 1 \qquad \forall i, i' \in I_j, r, r', k \in R|_{r+1 < r' \le r + \Delta r, r+1 \le k, r' \ge k+1} \end{split}$$

Aalto University School of Chemical Engineering

$$(\boldsymbol{P} \Rightarrow \boldsymbol{Q}) \equiv (\neg \boldsymbol{Q} \Rightarrow \neg \boldsymbol{P})$$

$$j_{1}$$

$$i_{r}$$

$$r_{r+1}$$

$$r_{r+2}$$

$$r_{r+3}$$

$$r_{r+4}$$

$$r_{r+1}$$

$$r_{r+2}$$

$$r_{r+3}$$

$$r_{r+4}$$

$$r_{r+1}$$

$$r_{r+2}$$

$$r_{r+3}$$

$$r_{r+4}$$

$$r_{r+1}$$

$$r_{r+2}$$

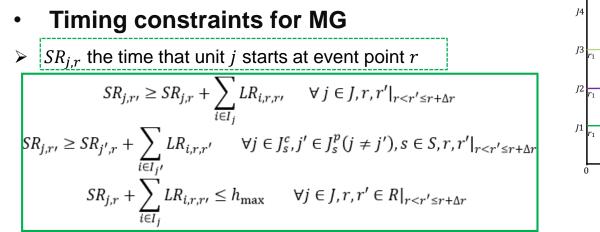
$$r_{r+3}$$

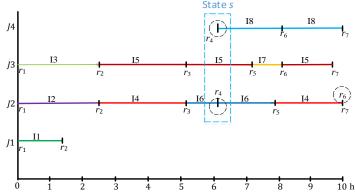
$$r_{r+4}$$

Mass balance

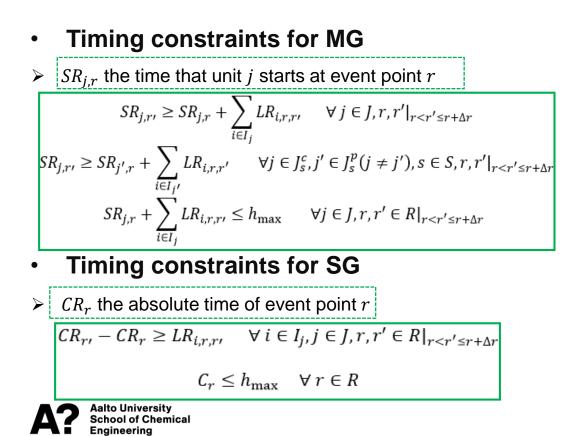
 $F_{s,r}$ excess amount of state s at time point r

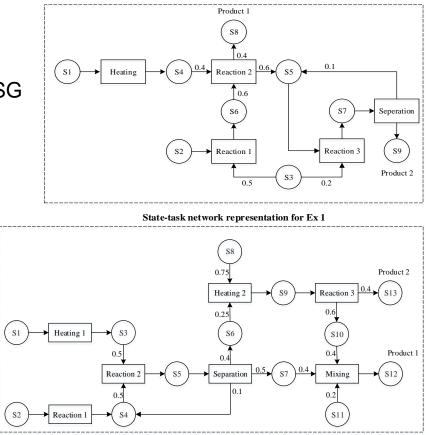
$$F_{s,r} = f_s^0|_{r=1} + F_{s,r-1}|_{r>1} + \sum_{i \in I_s^p} \rho_{i,s}^p \sum_{\substack{r' \in R \\ r' < r \le r' + \Delta r}} V_{i,r',r} + \sum_{i \in I_s^p} \rho_{i,s}^c \sum_{\substack{r' \in R \\ r < r' \le r + \Delta r}} V_{i,r,r'} \quad \forall s \in S, r \in R$$


Meeting demand


Demands (d_s) at states $s \in SM$ storing final products are enforced as a hard at

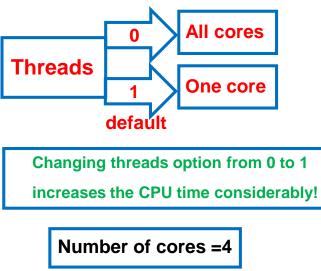
$$F_{s,r} \ge d_s, \quad \forall s \in SM, r = |R|$$


Timing constraints


Timing constraints

State s r_3 r_2 /1 $LR_{16,r3,r4}=$ C₂=2.6 $LR_{1rr4}=0$ $R_{1r1r2}=0$ for i>3 $C_{4}=5+1$ I3 LR_{I3,r1,r2}=2.6 15 13 I2 I6 I6 J2 $LR_{12,r1,r2}=2.5$ $LR_{I1,r1,r2}=1.3$ 0 10 h 17 single grid

Results and discussion


- Two benchmark problems Ex1-Ex2
 - Maravelias and Grossmann 2003 (M&G) vs. SG
 - Shaik and Floudas 2009 (S&F) vs. MG
- GAMS 24.9.1 / CPLEX 12.7.1
 - Option optcr =10⁻³
 - Option threads = 0
 - Option reslim = 7200 s.

Results and discussion

Effect of threads on the CPU time and solution quality •

- Cost maximization •
- Time horizon 10 h •
- Global optimum = 2358.2•

Aalto University School of Chemical

Engineering

a solution	quanty		Profit ma	aximization	mization			
	S&F (8 e	S&F (8 event points , $\Delta n = 1$)			MG (9 event points , $\Delta r = 2$)			
	CPU	MILP	RMILP	CPU	MILP	RMILP		
Opter	(s)	(\$)	(\$)	(s)	(\$)	(\$)		
		0p	tion thread	ls = 0				
10-1	10.96	2338.7	3618.6	9.35	2331.3	3618.6		
10-2	549.5	2345.3	3618.6	102.7	2345.3	3618.6		
10-3	353.7	2358.2	3618.6	119.6	2358.2	3618.6		
10-4	462.4	2358.2	3618.6	146.6	2358.2	3618.6		
10-5	462.7	2358.2	3618.6	145.7	2358.2	3618.6		
10-6	459.1	2358.2	3618.6	147.3	2358.2	3618.6		
		0p	tion thread	ls = 1				
10-1	31.9	2292.5	3618.6	51.65	2330.9	3618.6		
10-2	572.6	2345.3	3618.6	655.1	2358.2	3618.6		
10-3	875.4	2358.2	3618.6	947.6	2358.2	3618.6		
10-4	714.8	2358.2	3618.6	979.4	2358.2	3618.6		
10-5	710.7	2358.2	3618.6	950.5	2358.2	3618.6		
10-6	708.4	2358.2	3618.6	950.0	2358.2	3618.6		

Results and discussion

Effect of threads on the CPU time and solution quality •

- Cost maximization ٠
- Time horizon 10 h •
- Global optimum = 2358.2

Changing threads option also affect the

Solution quality!

a solution	i quality		aximization					
	S&F (8 event points , $\Delta n = 1$)				MG (9 event points , $\Delta r =$			
	CPU	MILP	RMILP	CPU	MILP	RMILP		
Optcr	(s)	(\$)	(\$)	(s)	(\$)	(\$)		
Option threads = 0								
10-1	10.96	2338.7	3618.6	9.35	2331.3	3618.6		
10-2	549.5	2345.3	3618.6	102.7	2345.3	3618.6		
10-3	353.7	2358.2	3618.6	119.6	2358.2	3618.6		
10-4	462.4	2358.2	3618.6	146.6	2358.2	3618.6		
10-5	462.7	2358.2	3618.6	145.7	2358.2	3618.6		
10-6	459.1	2358.2	3618.6	147.3	2358.2	3618.6		
		0 p	tion threa	ds = 1				
10-1	31.9	2292.5	3618.6	51.65	2330.9	3618.6		
10-2	572.6	2345.3	3618.6	655.1	▶2358.2	3618.6		
10-3	875.4	2358.2	3618.6	947.6	2358.2	3618.6		
10-4	714.8	2358.2	3618.6	979.4	2358.2	3618.6		
10-5	710.7	2358.2	3618.6	950.5	2358.2	3618.6		
10-6	708.4	2358.2	3618.6	950.0	2358.2	3618.6		

Results and discussion (SG vs. M&G)

		Event	CPU (2)	Binary	Total	Eqs.	MILP	RMILP
Maximum revenue	points (s) variables variables (\$) (\$) Ex 1a $(H = 8 h)$							
 Same number of event points 	M&G	5	0.23	80	496	1095	1498.56	1730.8
 Both perform equally in 3 cases 	SG	$5 (\Delta r = 1)$ $5 (\Delta r = 2)$	0.04 0.06	32 56	147 219	212 368	1498.56 1498.56	1730.8 1730.8
Both perform equally in 5 cases				Ex 1b (<i>H</i>	= 10 h)			
 SG performs better in 2b (10 times faster) 	M&G	8	25.01	128	793	1719	1962.69	2690.5
 Fewer constraints, but slighty more binary 	SG	$8 (\Delta r = 1)$	0.17	56	249	359	1860.72	2775.4
		$8(\Delta r = 2)$	6.50	104	393	671	1958.99	2775.6
variables		$8 (\Delta r = 3)$	9.45	144	513	1031	1962.69	2775.6
 SG leads to weaker RMILP 		$8 (\Delta r = 4)$	10.87	176	609	1399	1962.69	2775.6
		$\operatorname{Ex} 2a \left(H = 8 h \right)$						
	M&G	7	7.50	154	946	2076	1583.44	2560.6
	SG	$7 (\Delta r = 1)$	0.50	66	297	436	1274.48	2750.9
		$7 (\Delta r = 2)$	0.70	121	462	781	1583.44	2750.9
		$7 (\Delta r = 3)$	0.76	165	594	1157	1583.44	2750.9
				Ex 2b (<i>H</i>	= 10 h)			RMILP
	M&G	10	7200ª	220	1351	2934	2307.66	3473.9
	SG	$10 (\Delta r = 1)$	5.87	99	438	643	1963.88	3618.6
		$10 (\Delta r = 2)$	326.92	187	702	1195	2156.36	3618.6
		$10 \ (\Delta r = 3)$	148.4	264	933	1853	2307.66	3618.6
Aalto University School of Chemical		$10 (\Delta r = 4)$	188.29	330	1131	2567	2307.66	3618.6
	aRelativ	re σan (RG)=8.6	7%					

School of Chemical Engineering ^aRelative gap (RG)=8.67%700 s

Results and discussion (SG vs. M&G)

Maximum revenue

- Same number of event points
- Both perform equally in 3 cases (out of 6)
- SG performs better in other 3 cases
- Fewer constraints, but slighty more binary variables
- Roughly same RMILP

			-				-
	Event	CPU	Binary	Total	Eqs.	MILP	RMILP
	points	(s)	variables	variables	-	(h)	(h)
		Ex 1c ($l_{S8} = 200 \text{ m}$	u, $d_{S9} = 20$	0 mu)		
	equally				-		
M&G	10	7.06	160	992	2137	19.34	18.68
SG	$10 (\Delta n = 1)$	8.65	72	318	459	19.78	18.68
	$10 (\Delta n = 2)$	1.39	136	510	875	19.34	18.68
	$10 (\Delta n = 3)$	1.79	192	678	1379	19.34	18.68
		Ex le ($l_{S8} = 600 \text{ m}$	u, $d_{S9} = 60$	0 mu)		
M&G	20	7200ª	320	1982	4217	46.52	45.57
SG	$20 (\Delta n = 1)$	7200ь	152	658	949	46.52	45.57
		Ex 1d ($l_{S8} = 500 \text{ m}$	u, $d_{S9} = 40$	0 mu)		
M&G	25	7200⁰	400	2477	5257	56.81	56.05
SG	$25 (\Delta n = 1)$	7200°	192	828	1194	56.81	56.05
		Ex 2c (<i>d</i>	$m_{12} = 100 \text{ m}$	u, $d_{S13} = 20$	00 mu)		
Mag	11 better	71 1	2.42	1.407	2000	12.26	11.22
M&G		71.1	242	1487	2980	13.36	11.33
SG	$11 (\Delta n = 1)$	0.62	110	486	714	14.61	11.25
	$11 (\Delta n = 2)$		209	783	1335	13.53	11.25
	$11 (\Delta n = 3)$		297	1048	2087	13.36	11.25
	$11 (\Delta n = 4)$	13.03	374	1278	2920	13.36	11.25
		Ex 2d (<i>a</i>	$_{512} = 250 \text{ m}$	u, $a_{S13} = 23$	50 mu)		
M&G	12	23.60	264	1622	3508	17.02	14.40
SG	$12 (\Delta n = 1)$	0.79	121	533	783	18.97	14.27
	$12 (\Delta n = 1)$	1.36	231	863	1473	17.02	14.27
	$12 (\Delta n = 3)$	1.78	330	1160	2319	17.02	14.27
		Ex 2e (d	$g_{12} = 930 \text{ m}$	u, $d_{S13} = 84$	40 mu)		
M&G	29	691.4	638	3917	8370	51.82	50.92
SG	29 ($\Delta n = 1$)	12.43	308	1332	1956	59.74	49.92
	$29(\Delta n = 2)$	49.28	605	2223	3819	51.82	49.92
	$29(\Delta n = 3)$	110.21	891	3081	6263	51.82	49.92
^a RG=2.0	1%, PRG=0.799	%. °RG=1	.15%				

Aalto University School of Chemical Engineering

^aRG=2.01%, ^bRG=0.79%, ^cRG=1.15%

Results and discussion (MG vs. S&F)

Maximum revenue

- Both perform equally well (2 cases out 4)
- MG performs better than SF 1b and 2b
- MG leads to tighter formulations
- MG needs on more event point
- But, same binary and fewer Eqs

	Events	CPU (s)	Binary	Total	Eqs.	MILP (\$)	RMILP
			variables	variables			(\$)
Ex 1a (H = 8 h)							
S&F	$4 (\Delta n = 0)$	0.14	32	165	307	1498.56	1730.8
MG	$5(\Delta r = 1)$	0.10	32	162	250	1498.56	1730.8
		CPU	Ex 1b (<i>l</i>	$H = 10 \rm{h}$			RMILP
COL							
S&F	$8 (\Delta n = 1)$	1829.87	120	441	1255	1962.69	2805.4
MG	9 ($\Delta r = 2$)	302.12	120	478	920	1962.69	2804.2
			Ex 2a ($H = 8 \mathrm{h}$			
COL							
S&F	$6 (\Delta n = 1)$	8.82	121	453	1280	1583.44	2750.9
MG	$7 (\Delta r = 2)$	3.73	121	497	977	1583.44	2682.0
			Ex 2b (<i>l</i>	H = 10 h)			
COL							
S&F	$8 (\Delta n = 2)$	1570.12	231	743	2008	2358.20	3618.6
MG	$9 (\Delta n = 3)$	321.20	231	865	1997	2358.20	3618.64

Results and discussion (MG vs. S&F)

Events

 $9(\Delta n = 0)$

 $10 (\Delta n = 1)$

 $20 (\Delta n = 0)$

 $21 (\Delta n = 1)$

 $25 (\Delta n = 0)$

 $26 (\Delta n = 1)$

 $7(\Delta n = 0)$

 $8(\Delta n = 1)$

 $10 (\Delta n = 0)$

 $11 (\Delta n = 1)$

 $29 (\Delta n = 0)$ 29 ($\Delta n = 1$)

 $30 (\Delta n = 1)$

 $30 (\Delta n = 2)$

CPU

S&F

MG

S&F

MG

S&F

MG

S&F

MG

S&F

MG

S&F

MG

Minimum makespan

- Both perform equally well (5 cases out 6)
- MG performs better than S&F in Ex 2e (22.89 s vs. 7200)
- MG leads to tighter formulations
- MG needs on more event points •
- But, same binary and fewer Eqs

Δ?	Aalto University School of Chemical
	Engineering

^aRelative GAP=3.68%

LL.000 VO. 1 LUUO

CPU (s) Binary

variables

Total

Ex 1c ($d_{SB} = 200 \text{ mu}, d_{SB} = 200 \text{ mu}$)

variables

Eqs.

MILP

(h)

	(200 1111, 1139	200 110	·)	
1.10	72	371	652	19.34	18.68
1.09	72	348	547	19.34	18.68
Ex 10	d (<i>d</i> _{S8} =	= 500 mu, d _{S9} =	= 400 mu)	
0.59	160	822	1477	46.11	45.57
1.48	160	755	1196	46.11	45.57
Ex 1	e (d _{S8} =	= 600 mu, d _{S9} =	= 600 mu)	
3.17	200	1027	1852	56.68	56.05
2.25	200	940	1491	56.68	56.05
Ex 2c	(<i>d</i> _{S12} =	= 100 mu, <i>d</i> _{S13}	= 200 m	u)	RMILP
0.21	77	401	702	13.36	11.25
0.34	77	385	631	13.36	12.31
Ex 2d	$(d_{S12} =$	= 250 mu, d_{S13}	= 250 m	u)	
0.46	110	572	1017	17.02	14.27
0.45	110	541	892	17.02	14.53
Ex 2e	$(d_{S12} =$	= 930 mu, d_{S13}	= 840 m	u)	
1013	319	1655	3012	51.82	49.92
7200ª	627	2271	6299	51.82	49.92
5.35	319	1529	2545	51.82	50.26
22.89	627	2453	4981	51.82	49.92

RMILP

(h)

Novel continuous-time MILP scheduling formulation for multipurpose batch plants

• Pros

- Little effort is required to move from a single-grid model to a multi-grid one
- No big-M constraints
- The formulation can be extended to address continuous processes (Grade change, crude oil pooling problem, pipeline scheduling)
- Tighter LP-relaxation with MG

• Cons

- Two tuning parameters (r and Δr)
- Weaker LP-relaxation with SG
- The single grid model is not capable of handling changeover times constraints

Acknowledgements

The financial support from the Academy of Finland, through project "SINGPRO", is gratefully acknowledged.

Thank you for your attention!

Any Questions?

