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Scheduling  3 Key-decisions
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Introduction

Batch Plant Scheduling
• Optimal allocation of a set of limited resources to some tasks over time 

• Generic representations of batch process: Resource-Task Network (Pantelides, 1994) and State-task 

Network (Kondili et al., 1993)
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Time representation

• Common reference grid (Single-grid, SG)

• The time slots are common for all units

• Non-common reference grid (Multiple-grid, MG)

• The occurrences of each event can vary across the units
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Common constraints for SG and MG

Batch size and processing time
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 𝑋𝑖,𝑟,𝑟′ = 1 task 𝑖 is processed during time interval [𝑟, 𝑟′]|𝑟<𝑟′≤∆𝑟+𝑟

 𝑉𝑖,𝑟,𝑟′ = batch size of task 𝑖 during time interval 𝑟, 𝑟′ |𝑟<𝑟′≤∆𝑟+𝑟

 𝐿𝑅𝑖,𝑟,𝑟′ = processing time of task 𝑖 during time interval 𝑟, 𝑟′ |𝑟<𝑟′≤∆𝑟+𝑟
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Common constraints for SG and MG

Allocation constraints
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• For each unit only one task can start and finish at each time point
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• Task 𝑖 is processed in unit 𝑗 during time interval 𝑟, 𝑟′ |𝑟+1<𝑟′≤𝑟+∆𝑟, 
the same or other tasks suitable in unit 𝑗 cannot be processed in 

any time interval 𝑘, 𝑟′′ ⊆ 𝑟, 𝑟′
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Common constraints for SG and MG

• Mass balance

• Meeting demand

15

𝐹𝑠,𝑟 excess amount of state 𝑠 at time point 𝑟

Demands (𝑑𝑠) at states 𝑠 ∈ 𝑆𝑀 storing final products are enforced as a hard at 



Timing constraints

• Timing constraints for MG
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 𝑆𝑅𝑗,𝑟 the time that unit 𝑗 starts at event point 𝑟
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Timing constraints

• Timing constraints for MG

• Timing constraints for SG
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 𝐶𝑅𝑟 the absolute time of event point 𝑟

 𝑆𝑅𝑗,𝑟 the time that unit 𝑗 starts at event point 𝑟
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Results and discussion
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• Two benchmark problems Ex1-Ex2

• Maravelias and Grossmann 2003 (M&G) vs. SG

• Shaik and Floudas 2009 (S&F) vs. MG

• GAMS 24.9.1 / CPLEX 12.7.1 

• Option optcr =10-3

• Option threads = 0 

• Option reslim = 7200 s.
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Results and discussion
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• Effect of threads on the CPU time and solution quality

• Cost maximization

• Time horizon 10 h

• Global optimum = 2358.2

Changing threads option from 0 to 1 

increases the CPU time considerably!
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Results and discussion
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• Effect of threads on the CPU time and solution quality

• Cost maximization

• Time horizon 10 h

• Global optimum = 2358.2

Changing threads option also affect the 

Solution quality!



Results and discussion (SG vs. M&G) 
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RMILP

700 s

Maximum revenue

• Same number of event points

• Both perform equally in 3 cases

• SG performs better in 2b (10 times faster)

• Fewer constraints, but slighty more binary 

variables

• SG leads to weaker RMILP



Results and discussion (SG vs. M&G)
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Maximum revenue

• Same number of event points

• Both perform equally in 3 cases (out of 6)

• SG performs better in other 3 cases

• Fewer constraints, but slighty more binary 

variables

• Roughly same RMILP
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Results and discussion (MG vs. S&F) 
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• Both perform equally well  (2 cases out 4)

• MG performs better than SF 1b and 2b

• MG leads to tighter formulations

• MG needs on more event point 

• But, same binary and fewer Eqs

Maximum revenue

CPU RMILP



Results and discussion (MG vs. S&F) 
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Minimum makespan

• Both perform equally well  (5 cases out 6)

• MG performs better than S&F in Ex 2e (22.89 

s vs. 7200)

• MG leads to tighter formulations

• MG needs on more event points 

• But, same binary and fewer Eqs

22.89s vs. 7200s

CPU
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Conclusions
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Novel continuous-time MILP scheduling formulation for multipurpose batch plants

• Pros

• Little effort is required to move from a single-grid model to a multi-grid one

• No big-M constraints

• The formulation can be extended to address continuous processes (Grade change, crude oil 
pooling problem, pipeline scheduling) 

• Tighter LP-relaxation with MG

• Cons

• Two tuning parameters (𝒓 and ∆𝒓)

• Weaker LP-relaxation with SG

• The single grid model is not capable of handling changeover times constraints 
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Thank you for your attention!

Any Questions?


