Decision-making of Online Rescheduling
Procedures Using Neuroevolution of
Augmenting Topologies

Teemu lIkonen and liro Harjunkoski

ESCAPE-29, Eindhoven, the NL
18th of June, 2019

Aalto University

Engineering



Introduction: Online Rescheduling
Decisions

Scheduling

scheduling optimization
decisions
Armaﬁon

Process




Introduction: Online Rescheduling
Decisions

Typically, mathematical
programming or (meta)heuristics

L.

Scheduling

scheduling optimization

decisions

new information
Process




Introduction: Online Rescheduling
Decisions

Typically, mathematical

programming or (meta)heuristics [ Questions
L  How far ahead should we schedule
_ (i.e. horizon length)?
Scheduling

scheduling 1 * When should we reschedule?

decisions

optimization o _
Periodic or event-triggered?

Mathematical programming or
metaheuristics?

new information
Process

A

mop>
=]



Outline

 Reinforcement learning (RL)
* Introduction
« Neuroevolution of Augmenting Topologies (NEAT)

 Proposed approach
« Test case & periodic rescheduling as a reference method

e Conclusions

Aalto University
School of Chemical
n Engineering



Reinforcement Learning



Reinforcement Learning

* One of the three main branches of machine learning
« Along with supervised and unsupervised learning

« A goal-seeking agent learns while interacting with an environment

 Exploration and exploitation >| Agent |
« A wide variety of different . ..| |,cward — o
algorithms S | |R A
« Q-learning, SARSA, _*._Rf.l_' v ’[
Deep Q Network, etc. - nvironmen

Sutton and Barto (2018)
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Neuroevolution of Augmenting
Topologies (NEAT)

* First proposed by Stanley and
Miikkulainen (2002) o

Sensor Sensor Hidden | Output

NEAT genome Network (phenotype)

d A genetIC a|gOI'Ithm that Connection genes

simultaneously evolves the Decoding A

Weight 0.7| Weight 0.2| weight -1

topology and weighting Tonov 1 | Znnovs | tamev s,

parameters of a neural network | fo«s Jows fows T
Weight 0.3| Weight -1 | Weight 0.5 ensory
Enabled Enabled Enabled input

nnnnn 4 Innov 9 Innov 10

Floreano et al. (2008)
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Neuroevolution of Augmenting
Topologies (NEAT) (cont’d)

« Complexity of neural network (NN) is minimized
 Initiated from very simple NNs
« The complexity of NNs is incrementally increased during the
evolution

« The performance is reported to compare well against gradient-
based backpropagation algorithms (Such et al., 2017)

« Hausknecht et al. (2014) applied NEAT to train a neural network
to play 61 different Atari 2600 games



RL in Scheduling

A

Learning dispatching rules from historical scheduling data

e Olafsson & Li (2010)
« Ingimundardottir & Runarsson (2018)

Learning to make explicit scheduling decisions in a simulated
environment

« Semrov et al. (2016)

« Atallah et al. (2019)
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Proposed Approach
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Proposed Approach
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Test Case Using Periodic
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Optimization Problem

Small-scale example
A vehicle visits sites with due dates site[[]  orderdate [s]  due date [s]

« With a constant speed of 10 m/s ! . -
« The objective is to minimize the delay sum ) . "
icl 5 0 279
of all visits ; X 00
« Optimizer: ant colony optimization (ACO) : p "™
. . . . . 9 185 439
 New information is obtained during the 000 0
process 4 E !
« Rescheduling required 800) 0 j 40
 We use the rescheduling interval of 50's, = o 500
horizon length of 500 s, and allocate 5 s a0 O 200
computational budget to each rescheduling ~ o o 6 o
‘ ‘. ° ifi]'
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Small-scale Example: Initial Route

S = starting point

* Tinto=0s
* Texe =0s
 Generated by

greedy search
(known due dates

only)
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Small-scale Example: 15t ACO Run
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Small-scale Example: 1St
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Small-scale Example: 2"d ACO Run
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Small-scale Example: 3@ ACO Run
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Small-scale Example: 4th ACO Run
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Small-scale Example: 2"d New Site
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Small-scale Example: 5" ACO Run

Tinto = 200 s 1000 500
Texe =205s !
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Small-scale Example: 61" ACO Run
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Small-scale Example: 7th ACO Run
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Small-scale Example: 8" ACO Run
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Small-scale Example: Final Route

« The final delay sum 1000 500
IS 235.28 s !
800 s 400
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Large-scale Test Case:
Optimization Problem

« All due dates are randomly 1000 . 5 1000
drawn from the uniform °
distribution of [0,1000 s] S0 oo s B 800
. = @ ]
A total of 50 sites % 600 ° 600
40 sites are known at ti,;o = 0 S = ® o
The information of the remaining & | e g | ° |
10 sites arrive during the process = 400 ¢ 40
« Computational budget for 200] ~ e . 900
rescheduling is restricted to «° %
50 s 0 0

0 250 500 750 1000
Easting |m|
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Large-scale Test Case: Parameter
Tuning

Grid search in the space
of horizon length and
rescheduling interval

In total 66 combinations

horizon length [s]
o
S

[\
-
-

The optimized parameters
are (circled)
* Horizon length of 500 s

« Rescheduling interval
of 120 s

600

L
]
o

0 0 0 0 I 4000
O, 0 0 0 o - 3000 =

0 0 L]

1000

0 40 80 120 160 200 240 280 320

interval [s]

(the darkest red points exceed the scale)
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Large-scale Test Case:
Representative States

1000 n 1000 1000
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(a) initial route (b) tinfo = 240 s, taxe = 245.56 s (c) final realized route

* Optimized scheduling interval yields [1000s /120 s] =9
rescheduling procedures

« The final delay sum is 992.89 s
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Conclusions

 We propose an approach where

« The process and scheduling optimization together form the
environment in reinforcement learning

« An agent is trained by NEAT to make the rescheduling decisions

« Test case
* New information causing minor or major recourse is demonstrated

« We tuned the horizon length and rescheduling interval of periodic
rescheduling (reference method)

* Future work
* Investigate the proposed approach on the test case
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