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Introduction: Online Rescheduling 

Decisions

Process
new information

Questions

• How far ahead should we schedule 

(i.e. horizon length)?

• When should we reschedule?

• Periodic or event-triggered?

• Mathematical programming or 

metaheuristics?
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Reinforcement Learning
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Reinforcement Learning

• One of the three main branches of machine learning
• Along with supervised and unsupervised learning

• A goal-seeking agent learns while interacting with an environment

• Exploration and exploitation

• A wide variety of different 

algorithms
• Q-learning, SARSA, 

Deep Q Network, etc.
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Neuroevolution of Augmenting 

Topologies (NEAT)
• First proposed by Stanley and 

Miikkulainen (2002)

• A genetic algorithm that 

simultaneously evolves the 

topology and weighting 

parameters of a neural network

Floreano et al. (2008)
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Neuroevolution of Augmenting 

Topologies (NEAT) (cont’d)
• Complexity of neural network (NN) is minimized 

• Initiated from very simple NNs

• The complexity of NNs is incrementally increased during the 
evolution

• The performance is reported to compare well against gradient-

based backpropagation algorithms (Such et al., 2017)

• Hausknecht et al. (2014) applied NEAT to train a neural network 

to play 61 different Atari 2600 games
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RL in Scheduling

• Learning dispatching rules from historical scheduling data

• Olafsson & Li (2010)

• Ingimundardottir & Runarsson (2018)

• …

• Learning to make explicit scheduling decisions in a simulated 

environment

• Šemrov et al. (2016)

• Atallah et al. (2019)

• …
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Test Case Using Periodic 

Rescheduling
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Optimization Problem

• A vehicle visits sites with due dates

• With a constant speed of 10 m/s

• The objective is to minimize the delay sum 

of all visits

• Optimizer: ant colony optimization (ACO)

• New information is obtained during the 

process

• Rescheduling required

• We use the rescheduling interval of 50 s, 

horizon length of 500 s, and allocate 5 s 

computational budget to each rescheduling

Small-scale example
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Small-scale Example: Initial Route

• 𝑻𝐢𝐧𝐟𝐨 = 0 s

• 𝑻𝐞𝐱𝐞 = 0 s

• Generated by 

greedy search 

(known due dates 

only)
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Small-scale Example: 1st ACO Run

• 𝑻𝐢𝐧𝐟𝐨 = 0 s

• 𝑻𝐞𝐱𝐞 = 5 s

• The red point at the

bottom is 

prioritized
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Small-scale Example: 1st New Site

• 𝑻𝐢𝐧𝐟𝐨 = 0 s

• 𝑻𝐞𝐱𝐞 = 5 s
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Small-scale Example: 2nd ACO Run

• 𝑻𝐢𝐧𝐟𝐨 = 50 s

• 𝑻𝐞𝐱𝐞 = 55 s

• A new point is 

included in the 

route

• Many changes
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Small-scale Example: 3rd ACO Run

• 𝑻𝐢𝐧𝐟𝐨 = 100 s

• 𝑻𝐞𝐱𝐞 = 105 s 
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Small-scale Example: 4th ACO Run

• 𝑻𝐢𝐧𝐟𝐨 = 150 s

• 𝑻𝐞𝐱𝐞 = 155 s
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Small-scale Example: 2nd New Site

• 𝑻𝐢𝐧𝐟𝐨 = 150 s

• 𝑻𝐞𝐱𝐞 = 155 s
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Small-scale Example: 5th ACO Run

• 𝑻𝐢𝐧𝐟𝐨 = 200 s

• 𝑻𝐞𝐱𝐞 = 205 s

• A new point is 

included in the 

schedule

• A minimal change 

in the schedule
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Small-scale Example: 6th ACO Run

• 𝑻𝐢𝐧𝐟𝐨 = 250 s

• 𝑻𝐞𝐱𝐞 = 255 s
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Small-scale Example: 7th ACO Run

• 𝑻𝐢𝐧𝐟𝐨 = 300 s

• 𝑻𝐞𝐱𝐞 = 305 s 
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Small-scale Example: 8th ACO Run

• 𝑻𝐢𝐧𝐟𝐨 = 300 s

• 𝑻𝐞𝐱𝐞 = 305 s 
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Small-scale Example: Final Route

• The final delay sum 

is 235.28 s
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Large-scale Test Case: 

Optimization Problem
• All due dates are randomly 

drawn from the uniform 

distribution of [0,1000 s]

• A total of 50 sites
• 40 sites are known at 𝑡info = 0 s

• The information of the remaining 
10 sites arrive during the process

• Computational budget for 

rescheduling is restricted to 

50 s
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Large-scale Test Case: Parameter 

Tuning
• Grid search in the space 

of horizon length and 

rescheduling interval

• In total 66 combinations

• The optimized parameters 

are (circled)

• Horizon length of 500 s

• Rescheduling interval 
of 120 s

(the darkest red points exceed the scale)

32



Large-scale Test Case: 

Representative States 

• Optimized scheduling interval yields 1000 s / 120 s = 𝟗
rescheduling procedures

• The final delay sum is 992.89 s
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Conclusions

• We propose an approach where

• The process and scheduling optimization together form the 
environment in reinforcement learning

• An agent is trained by NEAT to make the rescheduling decisions

• Test case

• New information causing minor or major recourse is demonstrated

• We tuned the horizon length and rescheduling interval of periodic 
rescheduling (reference method)

• Future work

• Investigate the proposed approach on the test case
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