Decision-making of Online Rescheduling Procedures Using Neuroevolution of Augmenting Topologies

Teemu Ikonen and Iiro Harjunkoski

ESCAPE-29, Eindhoven, the NL

18th of June, 2019

Introduction: Online Rescheduling Decisions

Introduction: Online Rescheduling Decisions

Introduction: Online Rescheduling Decisions

Questions

- How far ahead should we schedule (i.e. horizon length)?
- When should we reschedule?
- Periodic or event-triggered?
- Mathematical programming or metaheuristics?

Outline

- Reinforcement learning (RL)
 - Introduction
 - Neuroevolution of Augmenting Topologies (NEAT)
- Proposed approach
- Test case & periodic rescheduling as a reference method
- Conclusions

Reinforcement Learning

Reinforcement Learning

- One of the three main branches of machine learning
 - Along with supervised and unsupervised learning
- A goal-seeking agent learns while interacting with an environment
- Exploration and exploitation
- A wide variety of different algorithms
 - Q-learning, SARSA, Deep Q Network, etc.

Neuroevolution of Augmenting Topologies (NEAT)

- First proposed by Stanley and Miikkulainen (2002)
- A genetic algorithm that simultaneously evolves the topology and weighting parameters of a neural network

Floreano et al. (2008)

Neuroevolution of Augmenting Topologies (NEAT) (cont'd)

- Complexity of neural network (NN) is minimized
 - Initiated from very simple NNs
 - The complexity of NNs is incrementally increased during the evolution
- The performance is reported to compare well against gradientbased backpropagation algorithms (Such et al., 2017)
- Hausknecht et al. (2014) applied NEAT to train a neural network to play 61 different Atari 2600 games

RL in Scheduling

- Learning dispatching rules from historical scheduling data
 - Olafsson & Li (2010)
 - Ingimundardottir & Runarsson (2018)
 - ...
- Learning to make explicit scheduling decisions in a simulated environment
 - Šemrov et al. (2016)
 - Atallah et al. (2019)
 - ...

Proposed Approach

Agent & Environment

Agent & Environment

Proposed Approach

Proposed Approach

the choice of scheduling algorithm

Test Case Using Periodic Rescheduling

Optimization Problem

- A vehicle visits sites with due dates
 - With a constant speed of 10 m/s
- The objective is to minimize the delay sum of all visits
- Optimizer: ant colony optimization (ACO)
- New information is obtained during the process
 - Rescheduling required
- We use the rescheduling interval of 50 s, horizon length of 500 s, and allocate 5 s computational budget to each rescheduling

Small-scale Example: Initial Route

- $T_{info} = \mathbf{0} \mathbf{s}$
- $T_{\text{exe}} = \mathbf{0} \mathbf{s}$
- Generated by greedy search (known due dates only)

Small-scale Example: 1st ACO Run

- $T_{info} = 0 s$
- $T_{\text{exe}} = 5 \text{ s}$
- The red point at the bottom is prioritized

1000500800 -400S Northing [m] $\frac{10000}{1000}$ 600 400 200 100 0^{+}_{0} $\left(\right)$ 750 1000 250500Easting [m]

location of the vehicle at T_{info}

) location of the vehicle at $T_{\rm exe}$

Small-scale Example: 1st New Site

- $T_{info} = \mathbf{0} \mathbf{s}$
- $T_{\rm exe} = 5 \, \rm s$

Aalto University

School of Chemical Engineering

Small-scale Example: 2nd ACO Run

- $T_{info} = 50 s$
- $T_{\rm exe} = 55 \, {\rm s}$
- A new point is included in the route
- Many changes

location of the vehicle at T_{info} location of the vehicle at T_{exe}

Wany changes route included in the

s 02 = _{ohi}T + s 22 = _{sco}T + s friiog wan A +

Small-scale Example: 3rd ACO Run

- $T_{info} = 100 s$
- $T_{\rm exe} = 105 \, {\rm s}$

Aalto University

School of Chemical Enaineerina

Small-scale Example: 4th ACO Run

- $T_{info} = 150 s$
- $T_{\rm exe} = 155 \, {\rm s}$

location of the vehicle at T_{exe}

Small-scale Example: 2nd New Site

- $T_{info} = 150 s$
- $T_{\rm exe} = 155 \, {\rm s}$

location of the vehicle at T_{info}

) location of the vehicle at T_{exe}

Small-scale Example: 5th ACO Run

- $T_{info} = 200 s$
- $T_{\rm exe} = 205 \, {\rm s}$
- A new point is included in the schedule
- A minimal change in the schedule
 - location of the vehicle at *T*_{info}
 - **)** location of the vehicle at T_{exe}

Small-scale Example: 6th ACO Run

- $T_{info} = 250 s$
- $T_{\rm exe} = 255 \, {\rm s}$

location of the vehicle at T_{info}

) location of the vehicle at T_{exe}

Small-scale Example: 7th ACO Run

- $T_{\rm info} = 300 \, {\rm s}$
- $T_{\rm exe} = 305 \, {\rm s}$

Aalto University

School of Chemical Enaineerina

Small-scale Example: 8th ACO Run

- $T_{info} = 300 s$
- $T_{\rm exe} = 305 \, {\rm s}$

location of the vehicle at T_{info}

) location of the vehicle at T_{exe}

Small-scale Example: Final Route

Large-scale Test Case: Optimization Problem

- All due dates are randomly drawn from the uniform distribution of [0,1000 s]
- A total of 50 sites
 - 40 sites are known at $t_{info} = 0$ s
 - The information of the remaining 10 sites arrive during the process
- Computational budget for rescheduling is restricted to 50 s

Large-scale Test Case: Parameter Tuning

- Grid search in the space of horizon length and rescheduling interval
- In total 66 combinations
- The optimized parameters are (circled)
 - Horizon length of 500 s
 - Rescheduling interval of 120 s

(the darkest red points exceed the scale)

Large-scale Test Case: **Representative States**

(b) $t_{info} = 240 \text{ s}, t_{exe} = 245.56 \text{ s}$

- (c) final realized route
- Optimized scheduling interval yields [1000 s / 120 s] = 9rescheduling procedures
- The final delay sum is 992.89 s

Conclusions

- We propose an approach where
 - The process and scheduling optimization together form the environment in reinforcement learning
 - An agent is trained by NEAT to make the rescheduling decisions
- Test case
 - New information causing minor or major recourse is demonstrated
 - We tuned the horizon length and rescheduling interval of periodic rescheduling (reference method)
- Future work
 - Investigate the proposed approach on the test case

References

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Floreano, D., Dürr, P., & Mattiussi, C. (2008). Neuroevolution: from architectures to learning. *Evolutionary Intelligence*, 1(1), 47-62.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., & Clune, J. (2017). Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. *arXiv preprint arXiv*:1712.06567.

Hausknecht, M., Lehman, J., Miikkulainen, R., & Stone, P. (2014). A neuroevolution approach to general atari game playing. IEEE Transactions on Computational Intelligence and AI in Games, 6(4), 355-366.

Olafsson, S., & Li, X. (2010). Learning effective new single machine dispatching rules from optimal scheduling data. *International Journal of Production Economics*, 128(1), 118-126.

Ingimundardottir, H., & Runarsson, T. P. (2018). Discovering dispatching rules from data using imitation learning: A case study for the job-shop problem. *Journal of Scheduling*, 21(4), 413-428.

Šemrov, D., Marsetič, R., Žura, M., Todorovski, L., & Srdic, A. (2016). Reinforcement learning approach for train rescheduling on a single-track railway. *Transportation Research Part B: Methodological*, 86, 250-267.

Atallah, R. F., Assi, C. M., & Khabbaz, M. J. (2018). Scheduling the operation of a connected vehicular network using deep reinforcement learning. *IEEE Transactions on Intelligent Transportation Systems*, (99), 1-14.

Acknowledgement

The financial support from Academy of Finland, through project SINGPRO, is gratefully acknowledged.

