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Questions:

• When to trigger a new 

rescheduling procedure?

• Mathematical programming or 

a heuristic algorithm? 

• How far ahead to schedule 

(i.e. horizon length)?

• How much computing 

resource to allocate?

Typically, mathematical programming 
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Reinforcement Learning

• One of the three main branches of machine learning
• Along with supervised and unsupervised learning

• A goal-seeking agent learns while interacting with an environment

• Exploration and exploitation

• A wide variety of different 

algorithms
• Q-learning (Watkins & Dayan, 1992)

• Deep Q-Network (Mnih et al., 2015)

• NEAT (Stanley & Miikkulainen, 2002)

• trust region policy optimization (Schulman et al., 2015), etc.
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Neuroevolution of Augmenting 

Topologies (NEAT)
• First proposed by Stanley and 

Miikkulainen (2002)

• A genetic algorithm that 

simultaneously evolves the 

topology and weighting 

parameters of a neural network
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Graph: Floreano et al., (2005)



Neuroevolution of Augmenting 

Topologies (NEAT)
• Complexity of neural network 

(NN) is minimized 
• Initiated from very simple NNs

• The complexity of NNs is 
incrementally increased during 
the evolution

• The performance is reported to 

compare well against gradient-

based backpropagation 

algorithms (Such et al., 2017)
Graph: Floreano et al., (2005)
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RL in Scheduling

• RL has been used to
• make explicit scheduling decisions (Semrov et al., 2016, Atallah et al., 2018)

• repair outdated schedules (Palombarini & Martinez, 2012)

• define dispatching rules from historical scheduling data (Priore et al., 2014, 
Aydin et al. 2000)
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Proposed Approach
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Agent’s decisions (i.e., actions on the optimizer):

• When to trigger a new rescheduling procedure?

• Mathematical programming or a heuristic algorithm? 

• How far ahead to schedule (i.e. horizon length)?

• How much computing resource to allocate?

Action 1

Action 2

Action 3

Action 4



Proposed Approach
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the process and 

the optimizer

rescheduling 

decisions
hidden 

nodes
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Proposed Approach

rescheduling 

decisions
hidden 

nodes
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hidden 

nodes

rescheduling timing and 

optimization strategy

(Decisions 1 & 2)



Test Case
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Test Case: Optimization Problem

• A vehicle visits sites with due dates

• The objective is to minimize the 

delay sum of all visits

• Optimizer: ant colony optimization 

(ACO)

• Computing budget for all 

rescheduling procedures: 50 s

• Sites
• 40 sites are known at 𝑡 = 0 s

• 10 sites are received during the process

17

s

𝑡 = 0 s



Test Case: Optimization Problem

• Randomly generated locations, 

order and due dates

• 5 training instances

• 10 test instances
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s

𝑡 = 0 s



Location of the vehicle…

• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

Test Case: Periodic Rescheduling
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Test Case: Periodic Rescheduling
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s

𝑡 = 40 s

Location of the vehicle…

• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

scheduling

horizon



Test Case: Periodic Rescheduling
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s

𝑡 = 80 s

Location of the vehicle…

• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

scheduling

horizon
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Location of the vehicle…

• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

scheduling

horizon
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• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

scheduling

horizon



Test Case: Periodic Rescheduling

24

s

𝑡 = 200 s

Location of the vehicle…

• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

scheduling

horizon



Test Case: Periodic Rescheduling

25

s

𝑡 = 240 s

Location of the vehicle…

• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

scheduling

horizon
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s

𝑡 = 280 s

Location of the vehicle…

• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

scheduling

horizon



Test Case: Periodic Rescheduling
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s

𝑡 = 320 s

Location of the vehicle…

• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

scheduling

horizon



Test Case: Periodic Rescheduling
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s

𝑡 = 360 s

Location of the vehicle…

• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

scheduling

horizon



Test Case: Periodic Rescheduling
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s

𝑡 = 400 s

Location of the vehicle…

• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

scheduling

horizon



Test Case: Periodic Rescheduling
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s

𝑡 = 440 s

Location of the vehicle…

• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

scheduling

horizon



Test Case: Periodic Rescheduling
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s

𝑡 = 1005 s (final route)

Location of the vehicle…

• at the start

• at the end

… of the optimization 

procedure.

• Realized route

• Scheduled route

Final delay sum is 1504.9 s



Test Case: Parameter Tuning

• Grid search in the space 

of horizon length and 

rescheduling interval

• Average delay sum of 5 

randomized instances of 

the test case

• The optimized parameter 

combination is circled

(the darkest red points exceed the scale)
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Test Case: State and Action 

Spaces, and Reward
• A simplified version of the 

approach with two 

rescheduling decisions
• Rescheduling timing (𝑎1)

• Computing time per procedure 
(𝑎2)

• We use the NEAT algorithm
• Population size of 80

• 80 generations

• 20 hours of training on a 
cluster of 20 CPUs
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• The reward is the final delay 

sum multiplied by -1

• The agent can act at an 

interval of 1 s



Test Case: Results
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Test case 1:

• new orders 0/50

Test case 2:

• new orders 10/50

Test case 3:

• new orders 20/50

order date

due date

order date

due date

order date

due date



Test Case: Results
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Test case 1:

• new orders 0/50

Test case 2:

• new orders 10/50

Test case 3:

• new orders 20/50

Test Case: Neural Network 

Topologies



Conclusions

• We propose an approach where
• The process and scheduling optimization together form the environment in 

reinforcement learning

• An RL agent is trained to make four decisions on rescheduling procedures

• In the three test cases, a simplified version of the approach 

yields, on average, better results than periodic rescheduling

• Future work investigates
• the approach with all four decisions

• other RL algorithms for the purpose
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