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Introduction: Online Rescheduling

Decisions

Questions:

* When to trigger a new
rescheduling procedure?

« Mathematical programming or
a heuristic algorithm?

 How far ahead to schedule
(i.e. horizon length)?

* How much computing
resource to allocate?
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Outline

 Reinforcement learning (RL)

* Introduction
*  Neuroevolution of Augmenting Topologies (NEAT)

« Proposed approach

« Test case
«  Periodic rescheduling (benchmark)
«  NEAT agent

e Conclusions
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Reinforcement Learning



Reinforcement Learning

* One of the three main branches of machine learning
« Along with supervised and unsupervised learning

« A goal-seeking agent learns while interacting with an environment

- Exploration and exploitation —>| Agent
A wide variety of different
algorithms reward | | state action
* Q-learning (Watkins & Dayan, 1992) :
* Deep Q-Network (Mnih et al., 2015) Environment <

* NEAT (Stanley & Miikkulainen, 2002)
« trust region policy optimization (Schulman et al., 2015), etc.
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Neuroevolution of Augmenting
Topologies (NEAT)

* First proposed by Stanley and
Miikkulainen (2002) o
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Neuroevolution of Augmenting

Topologies (NEAT)

A

Complexity of neural network
(NN) is minimized
« Initiated from very simple NNs

* The complexity of NNs is
incrementally increased during
the evolution

The performance is reported to
compare well against gradient-

based backpropagation
algorithms (Such et al., 2017)
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RL in Scheduling

 RL has been used to
« make explicit scheduling decisions (Semrov et al., 2016, Atallah et al., 2018)
* repair outdated schedules (Palombarini & Martinez, 2012)

» define dispatching rules from historical scheduling data (Priore et al., 2014,
Aydin et al. 2000)
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Proposed Approach

Agent’s decisions (i.e., actions on the optimizer):

When to trigger a new rescheduling procedure?
Mathematical programming or a heuristic algorithm?
How far ahead to schedule (i.e. horizon length)?

How much computing resource to allocate?
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Proposed Approach
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Proposed Approach

state

Category 1: deviations in action
optimization parameters :

(e.g., processing times,
material yields)

Category 2: discrete changes {Q\ hidden

No rescheduling
Heuristic algorithm

in the process environment
(e.g., new orders, equipment
breakdowns)

Mathematical programming
Horizon length

i

______________ Allocated computing time

optimizer (e.g., remaining
computing resource, . ..
remaining solution time of reschedulin g timing an d
the ongoing rescheduling) 0 ptl mization strate gy

(Decisions 1 & 2)

Category 3: state of the {
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Test Case: Optimization Problem

A vehicle visits sites with due dates

The objective is to minimize the
delay sum of all visits

Optimizer: ant colony optimization
(ACO)

Computing budget for all
rescheduling procedures: 50 s

Sites
« 40 sitesare knownatt =0s
« 10 sites are received during the process
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Test Case: Optimization Problem

« Randomly generated locations,
order and due dates

« 5training instances
« 10test instances
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Test Case: Periodic Rescheduling

scheduling
t=0s horizon
Location of the vehicle... B T 1000
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procedure. R o
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Test Case: Periodic Rescheduling

scheduling
r—a4ps horizon
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Test Case: Periodic Rescheduling

scheduling
r—gps horizon

Location of the vehicle... \ 1000
 atthe start O 200
- atthe end ® 5
... of the optimization N, 9|, 1600
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400
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Test Case: Periodic Rescheduling

scheduling
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Test Case: Periodic Rescheduling

scheduling
t=160s Norizon
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Test Case: Periodic Rescheduling

scheduling
t =200 NOrizon
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Test Case: Periodic Rescheduling
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Test Case: Periodic Rescheduling
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Test Case: Periodic Rescheduling
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Test Case: Periodic Rescheduling
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Test Case: Periodic Rescheduling

scheduling
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Test Case: Periodic Rescheduling

scheduling
t—a40s NOrizon
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Test Case: Periodic Rescheduling
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Test Case: Parameter Tuning

-00 = 4000
. . e 3500
« Grid search in the space oo I ’
of horizon length and =} 5001=® 3000 =
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Test Case: State and Action
Spaces, and Reward

A simplified version of the « The reward is the final delay
approach with two sum multiplied by -1
rescheduling decisions

* Rescheduling timing (a,)
« Computing time per procedure

« The agent can act at an
Interval of 1 s

(aZ) state action
. s,: urgency of the most
e We use th e NEAT al g orit h m urgent unscheduled order — N\ ______________
. . ,: computing resources i ! a,: rescheduling
» Population size of 80 remaining O\ /O
° 80 g ene I‘ati ons ff;nrég;r:;lized time in the ?)7 :\O a,: computing time
« 20 hours of training on a s time t the end of the
cluster of 20 CPUs seeciing ot
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Test Case: Results

Test case 1: periodic I I I I I I I I | I
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Test Case: Results

Average delay sum [s]

Difference [%]

Rescheduling  training test training test
Test case method instances  instances instances  instances
1 periodic 1120.7 1233.9
NEAT agent 1061.3 1103.5 -5.30 -10.57
2 periodic 15049 15244
NEAT agent 1365.9 1461.8 -9.24 -4.11
3 periodic 17930  209.1
NEAT agent 1635.2 1775.0 -8.80 -15.28

A?
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Test Case: Neural Network

state action

I O O I O I e S s,: urgency of the most
urgent unscheduled order N ______________
O\l /O a,: rescheduling
s;: normalized time in the ? \O a,: computing time

§,: computing resources
remaining

timespan

s,: time to the end of the
scheduling horizon

O@ "
h
.

O
Test case 1: Test case 2: Test case 3:
 new orders 0/50 « new orders 10/50 + new orders 20/50
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Conclusions

 We propose an approach where

« The process and scheduling optimization together form the environment in
reinforcement learning
« An RL agent is trained to make four decisions on rescheduling procedures

* In the three test cases, a simplified version of the approach
yields, on average, better results than periodic rescheduling

« Future work investigates
« the approach with all four decisions
« other RL algorithms for the purpose
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