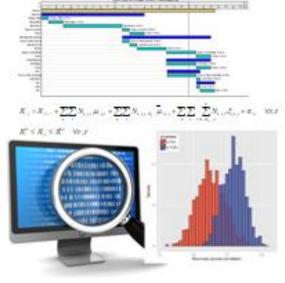


Parameter Prediction for Stochastic Job Shop Scheduling Using probabilistic Machine Learning

Teemu Ikonen and Iiro Harjunkoski 2nd November 2018 AIChE Annual Meeting 2018 Aalto University

SINGPRO Project (2018-2019) Synergistic and intelligent process optimization

- Earlier in AIChE:
 - 530h Scheduling and Analytics Towards better planning (Iiro Harjunkoski)
- In brief
 - PI: Adj. Professor Iiro Harjunkoski (Aalto University / ABB)
 - Partner: Professor Keijo Heljanko (University of Helsinki)
 - The goal is to use data analytics with mathematical optimization models collaboratively, in order to create adaptive data-driven online scheduling models

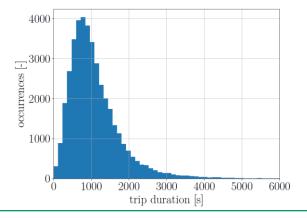


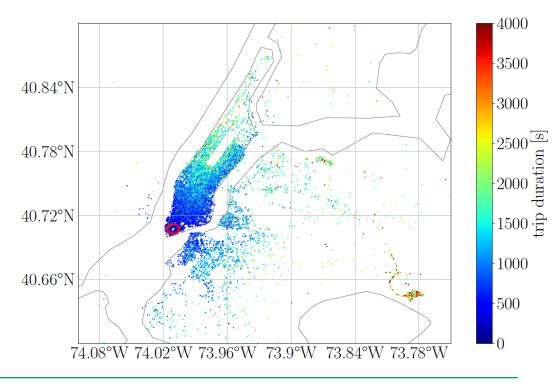
Outline

- New York City taxi duration dataset
- Scheduling problem
- Methods
 - Prediction models
 - Scheduling model
- Results
 - Example problem
 - Statistical experiment
- Conclusions and future work

New York City (NYC) taxi duration dataset

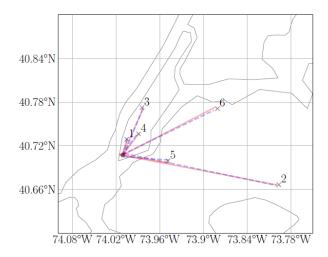
- Openly available dataset at
 <u>https://www.kaggle.com/c/nyc-taxi-trip-duration</u>
- Data of over 1.4 million taxi tips in NYC
- The ground truth is the trip duration
- Examples of features
 - Passenger count, pick-up and drop-off date, time and coordinates

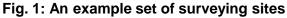


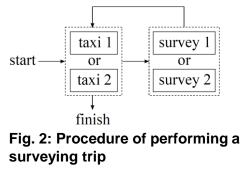


Scheduling problem

- A company, head quartered at Wall street, performs surveys at remote sites in NYC
- Objective: minimize the make span of performing surveying trips at six different sites (Fig. 1)
- Surveying trip consists of outbound taxi trip, survey and inbound taxi trip (Fig. 2)
- Constraints:
 - Only two taxi trips can be performed at the same time
 - Only two surveys can be performed at the same time
- Durations of taxi trips are predicted, the surveys have a fixed duration of 1800 s







Scheduling problem: industrial correspondence

Scheduling problem	Corresponding industrial examples
Outbound taxi trip	Preparation, heating
Survey	Chemical reaction, mechanical operation
Inbound taxi trip	Purification, cooling

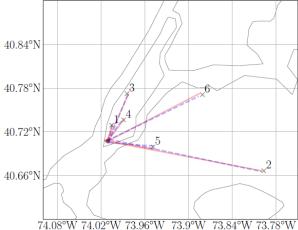
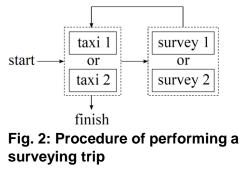
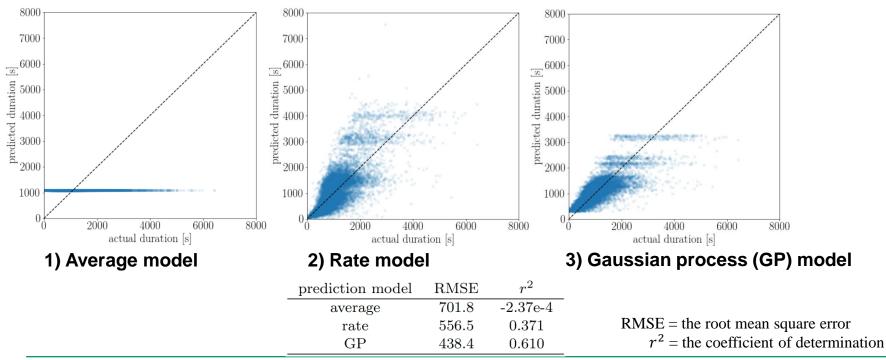


Fig. 1: An example set of surveying sites



Prediction models



Prediction models, starting from the lowest fidelity

Prediction models: industrial correspondence

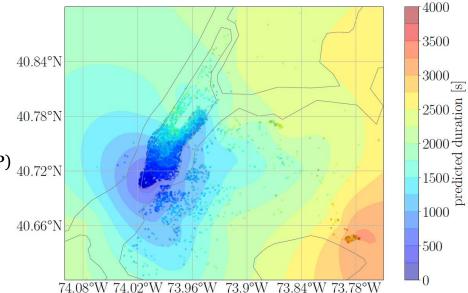
Prediction model	Industrial correspondence
Average	A static table value, which is determined as an average of historical values
Rate	A model which considers the task to have a constant processing rate (e.g. heating or purification of a volume of material)

Prediction models: Gaussian process regression

- Kernel
 - Exponential kernel

$$\kappa(x, x') = \sigma_f^2 \exp\left(-\frac{\|x - x'\|}{2l^2}\right)$$

- Noise term
- Choosing the hyperparameters
 - Tuned using the maximum a posteriori (MAP) $_{\rm 40.72^\circ N}$ estimate
- 3000 random samples from the training data



Scheduling model

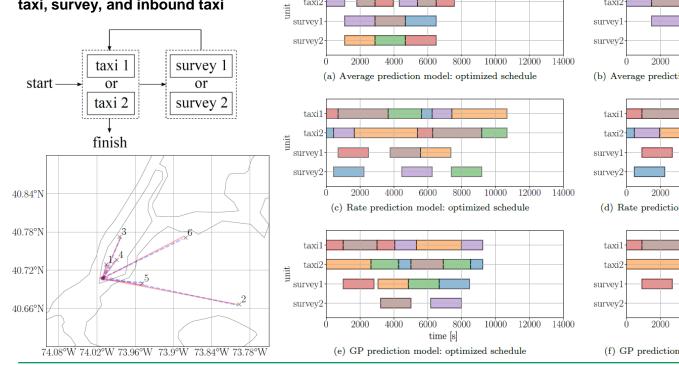
- Unit-specific continuous-time scheduling model by Shaik and Floudas (2009)
- We use the value $\Delta n = 1$ (which defines the number of event points a job can span over)
- The number of total event points is determined by iteratively increasing *n* until the model has a feasible solution

Shaik, M.A. and Floudas, C.A. (2009). Novel unified modeling approach for short-term scheduling. *Industrial & Engineering Chemistry Research*, 48(6), 2947-2964.

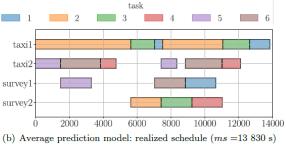
Results: a single scheduling problem

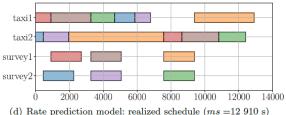
Optimized and realized schedules of six tasks, consisting of outbound taxi, survey, and inbound taxi

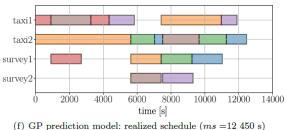
> Aalto University School of Chemical Engineering



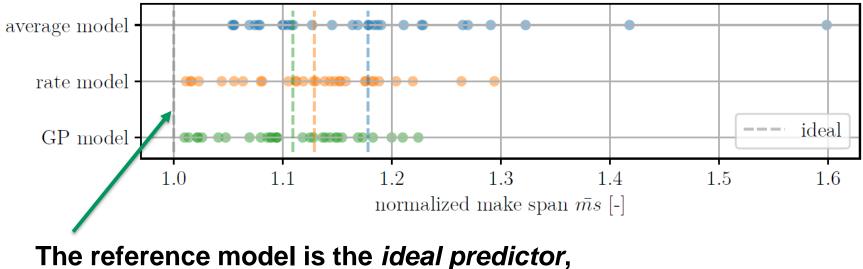
taxil







Results: 30 different scheduling problems



for which $r^2 = 1$ and RMSE = 0.

Results: 30 different scheduling problems

prediction model	$ar{ms}$ [-]		solution time [s]		
	mean	sd	mean	\min	max
average	1.178	0.119	4.45	4.25	5.74
rate	1.129	0.072	45.94	7.71	121.69
GP	1.109	0.061	79.66	16.44	344.82

• Average prediction model requires an order of magnitude shorter solution time than the rate and GP prediction models

Conclusions

- Job shop scheduling with data-driven duration prediction of three levels of fidelity is studied
- In the studied problem, the GP prediction model yields shorter make spans than average and rate prediction models by the margins of 5.8% and 1.8%, respectively
- However, the computational costs of GP and rate prediction models are an order of magnitude higher than that of the average prediction model

Future work

- Proactive scheduling (e.g. adjustable robust optimization) with the uncertainty predictions from Gaussian process regression
- Applications to industrial-scale scheduling problems
- Prediction of other scheduling parameters (e.g. customer demand, product yields)

