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SINGPRO Targets
Create and prove novel concepts in real life

• Show that big data technologies can be deployed together with 
optimization strategies, to close the decision loop in automation

• The results can help defining future research needs within systems-level 
integration of process control systems and data-driven decision making

• Collaborate with Finnish industry on piloting the methodology

• Get access to real data, process information and the opportunity to 
discuss, test and demonstrate the solution approaches in practice

• Create collaborative concepts that are re-usable across various 
industries

5.12.2019
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Questions to be Answered (1/2)

• Often a production plan is already ”old” soon after being

rolled out to the plant floor

1. Could I do better planning by knowing more about the process, i.e. 
utilizing the real-time data?

• Schedules are usually based on average durations (tables)

2. Is it better to dynamically generate accurate statistics on process 
behaviour every time I want to schedule?

• Disturbances and breakdowns often come as a surprise

3. How many incidents can actually be predicted and avoided?

5.12.2019
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Questions to be Answered (2/2)

• Often we focus on the most obvious data assuming simple

causality

4. What information actually is relevant for root-cause analysis? Are
there hidden relationships?

• Many decisions in optimization add to the complexity

5. Are there decisions that can be excluded from the optimization 
scope, based on what we know from the data?

• Data is mostly collected and stored only for troubleshooting

6. What is the actual value of this data?

5.12.2019
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1. Could I do better planning 

by knowing more about the 

process, i.e. utilizing the 

real-time data?



Historical data
Data analytics

(a) (b)

Data Driven Model for Grade 
Change in P&P Process
Combining data analytics and machine learning with 
a rigorous scheduling model in an integrated fashion

Heuristic constraints derived from the data analytics 
methods allow faster performance

5.12.2019
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𝐼𝑖 = Set of grades that can 
follow grade 𝑖

𝑋𝑖,𝑟 = 1 if production run 𝑟

processes grade 𝑖

Occurrence table obtained 
from historical data



Historical data
Data analytics

(a) (b)

Data Driven Model for Grade 
Change in P&P Process
Combining data analytics and machine learning with 
a rigorous scheduling model in an integrated fashion

Heuristic constraints derived from the data analytics 
methods allow faster performance

5.12.2019
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Occurrence table obtained 
from historical data

Considerable reduction in the number of constraints

Parameter: 
Transition 
time between 
grades 𝑖 and 𝑖’



Case Study Results

Two weeks: due date 1= 168 h, due date 2= 336 h for 20 grades

Objective: minimize grade change transition time and 
production runs

5.12.2019

10



Reinforcement Learning (RL) of 

Online Rescheduling Decisions
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Questions:

• When to trigger a new 

rescheduling procedure?

• Mathematical programming or 

a heuristic algorithm? 

• How far ahead to schedule 

(i.e. horizon length)?

• How much computing 

resource to allocate?



Reinforcement Learning (RL) of 

Online Rescheduling Decisions
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RL of rescheduling: First Results
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• RL algorithm: Neuroevolution of Augmenting Topologies (NEAT) 

(Stanley and Miikkulainen, 2002)

• Simplified decision space:
• Rescheduling timing

• Computing resource allocation

• On three test cases, better closed loop schedules than by 

periodic rescheduling by margins of 4.1 to 15.2%

order date

due date



2. Is it better to dynamically 

generate accurate statistics on 

process behavior every time I 

want to schedule?



Scheduling problem based on the 

NYC taxi data
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Openly available dataset at https://www.kaggle.com/c/nyc-taxi-trip-duration

Data of over 1.4 million taxi tips in NYC

The ground truth is the trip duration

Examples of features: Passenger count, pick-
up and drop-off dates, time and coordinates

https://www.kaggle.com/c/nyc-taxi-trip-duration


Scheduling problem based on the 

NYC taxi data
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RMSE = the root mean square error

𝑟2 = the coefficient of determination

1) Average model 2) Rate model 3) Gaussian process (GP) model



Scheduling problem based on the 

NYC taxi data
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The reference model is the ideal predictor,

for which 𝒓𝟐 = 𝟏 and RMSE = 𝟎.



3. How many incidents can 

actually be predicted and 

avoided?



Matemaattis-luonnontieteellinen tiedekunta 05/12/2019Causality Discovery / Deneke et. al. 19

OVERVIEW: BREAK PREDICTION MODELING



Matemaattis-luonnontieteellinen tiedekunta

• Data preprocessing 

• Cleaning: removing ambiguous break signals  

• Resampling: to have a common rate among signals 

• Slicing: selecting near-break and normal operation regions

• Scaling: balancing differences in amplitude 

05/12/2019Causality Discovery / Deneke et. al. 20

PREPROCESSING



Matemaattis-luonnontieteellinen tiedekunta

• Model 1: Can we distinguish break from non-break? 

• Samples that are before a break are used as class one

• Samples that are during the break are used as class 
two 

• The task is to predict (distinguish) these two classes 

• Result:  

• 96.7% accuracy 

• Highly influenced by correlated signals 

• Fails to identify root-causes

• Not valuable in practice 

05/12/2019Causality Discovery / Deneke et. al. 21

PREDICTION



Matemaattis-luonnontieteellinen tiedekunta

• Model 2: Can we distinguish near-break from normal? 

• Samples that are further away from a break are used as 
class one 

• Samples that are just before a break are used as class two 

• The task is to predict (distinguish) these two classes

• Result:

• 50-58% accuracy

• Identifies some potential root-causes 

• More likely valuable in practice

• Still requires further study and improvement 

05/12/2019Causality Discovery / Deneke et. al. 22

PREDICTION



4. What information actually is 

relevant for root-cause 

analysis? Are there hidden 

relationships?



Matemaattis-luonnontieteellinen tiedekunta

• Challenges 

• Identifying possible root-cause signals 

• Identifying delays between root-cause signals and break 

• Identifying and removing highly correlated signals (with no delay) to the break

• Result: 

• A few interesting possible root-causes discovered 

‒ Pressure x

‒ Fluid level y

‒ Quality z

05/12/2019Causality Discovery / Deneke et. al. 24

ROOT-CAUSE ANALYSIS



Matemaattis-luonnontieteellinen tiedekunta

• LSTM

• Neural nets which have memory and feedback

• Can capture trends more easily

• Can be used to learn sequence to sequence problems 

• Random forest

• Constructs multiple decision trees on training data

• Generates a model in parallel

• Combines the results of all decision trees

• Can provide information on feature importance 

• Cross correlation and Granger causality

05/12/2019Causality Discovery / Deneke et. al. 25

DEPLOYED LEARNING ALGORITHMS



5. Are there decisions that can 

be excluded from the 

optimization scope, based 

on what we know from the 

data?



Selective maintenance optimization
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Experimental data

of failure times 

(Aarset, 1987)

replacement is 

not sensible
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Failure model (Sarhan & Apaloo, 2013)



Selective maintenance optimization

29

• The objective is to maximize 

the reliability of the system

• Subject to maintenance time 

and budget constraints

• We include the following 

bound:

An order of magnitude reduction in solution time

𝒚𝒌,𝒋 Binary variable defining whether unit 

(k, j) is replaced

∆𝑹𝒌,𝒋
𝒚

Improvement in realiabity of the unit

(k, j), if component is replaced



6. What is the actual value of 

this data?



Conclusions

• We can see clear benefits from using more advanced methods to 

process historical / on-line data

• Applying AI/ML methods can
• Improve the accuracy of scheduling

• Improve the predictability of processes

• Help reducing the search domain of large-scale problems

• The data-related work is still very problem-specific
• A generic ”cookbook” still missing to reduce the efforts

• The value of data is difficult to estimate (industry looking into 

this) partially due to lack of access to business figures

• Collaboration across discplines is a prerequisite for success
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