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SINGPRO Targets

Create and prove novel concepts in real life

« Show that big data technologies can be deployed together with
optimization strategies, to close the decision loop in automation

» The results can help defining future research needs within systems-level
integration of process control systems and data-driven decision making

» Collaborate with Finnish industry on piloting the methodology

» Get access to real data, process information and the opportunity to
discuss, test and demonstrate the solution approaches in practice

» Create collaborative concepts that are re-usable across various
industries
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Questions to be Answered (1/2)

« Often a production plan is already "old” soon after being
rolled out to the plant floor

1. Could I do better planning by knowing more about the process, i.e.
utilizing the real-time data?

« Schedules are usually based on average durations (tables)

2. Is it better to dynamically generate accurate statistics on process
behaviour every time I want to schedule?

« Disturbances and breakdowns often come as a surprise
3. How many incidents can actually be predicted and avoided?

School of Chemical N7z 5.12.2019
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Questions to be Answered (2/2)

« Often we focus on the most obvious data assuming simple
causality

4. What information actually is relevant for root-cause analysis? Are
there hidden relationships?

« Many decisions in optimization add to the complexity

5. Are there decisions that can be excluded from the optimization
scope, based on what we know from the data?

« Datais mostly collected and stored only for troubleshooting
6. What is the actual value of this data?

School of Chemical N7z 5.12.2019
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1. Could | do better planning
by knowing more about the
process, I.e. utilizing the
real-time data?
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Data Driven Model for Grade
Change in P&P Process

Combining data analytics and machine learning with
a rigorous scheduling model in an integrated fashion

Heuristic constraints derived from the data analytics 0% W GBI TR 3
methods allow faster performance Occurrence table obtained

from historical data
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Case Study Results

Two weeks: due date 1= 168 h, due date 2= 336 h for 20 grades

Objective: minimize grade change transition time and
production runs

Full-space Data-driven
#Production runs 16 17 16 17
CPU(s)* 18000 18000 4143.4 6974.6
#Constraints 8773 9340 5263 5596
Objective ($) 58536.1 50613.8 53988.8 50338.8 (0.5% i)
Relative gap 76.08 72.14 0 0

*GAMS/CPLEX 12.7.1 (Intel i5-7300U, 2.60 GHz, 8 GB of RAM, Windows 10, 64-bit)

Aalto University K ‘:1:1'\((@
School of Chemical ﬁ'j?ﬁé“ 5.12.2019

B Engineering Slngpro. 10



Reinforcement Learning (RL) of
Online Rescheduling Decisions

Questions: 7

* When to trigger a new -
rescheduling procedure? Optlmlzer

scheduling
« Mathematical programming or HNI:S
a heuristic algorithm? . information

 How far ahead to schedule
(i.e. horizon length)? Process

* How much computing
resource to allocate?
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Reinforcement Learning (RL) of
Online Rescheduling Decisions
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RL of rescheduling: First Results

 RL algorithm: Neuroevolution of Augmenting Topologies (NEAT)

(Stanley and Miikkulainen, 2002)

« Simplified decision space:
* Rescheduling timing
« Computing resource allocation

« On three test cases, better closed loop schedules than by

periodic rescheduling by margins of 4.1 to 15.2%

periodic{ [ [ [ | [ [ [ [ [ [ [ | ||
NEAT A
orderdate { . it — "
due date - B N i e I
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2. Is It better to dynamically
generate accurate statistics on
process behavior every time |
want to schedule?



Scheduling problem based on the
NYC taxi data

Openly available dataset at https://www.kaggle.com/c/nyc-taxi-trip-duration

Data of over 1.4 million taxi tips in NYC 4000
4 ] /
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Scheduling problem based on the
data
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3) Gaussian process (GP) model

prediction model ~RMSE r?
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16



Scheduling problem based on the
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The reference model is the ideal predictor,
for which r* = 1 and RMSE = 0.
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3. How many incidents can
actually be predicted and
avolded?



OVERVIEW: BREAK PREDICTION MODELING

Predictions
near-break/normal
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PREPROCESSING

» Data preprocessing

Scaling: balancing differences in amplitude

Cleaning: removing ambiguous break signals
Resampling: to have a common rate among signals
Slicing: selecting near-break and normal operation regions
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PREDICTION

* Model 1: Can we distinguish break from non-break?
« Samples that are before a break are used as class one

. tSampIes that are during the break are used as class
WO

« The task is to predict (distinguish) these two classes

« Result:
* 96.7% accuracy
« Highly influenced by correlated signals
« Fails to identify root-causes
* Not valuable in practice

HELSINGIN YLIOPISTO
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PREDICTION

« Model 2: Can we distinguish near-break from normal? = duone
. Samples that are further away from a break are used as 3.
class one g
« Samples that are just before a break are used as class two
« The task is to predict (distinguish) these two classes ] B
« Result: v
+ 50-58% accuracy s ﬂ

s| —— wet-end break
viiran pesuveden paine
—— hirun laatikko 2 alipaine
wet-end break

« Identifies some potential root-causes
« More likely valuable in practice

break & possible root-causes

 Still requires further study and improvement

ssssss
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4. What information actually is
relevant for root-cause
analysis? Are there hidden
relationships?



ROOT-CAUSE ANALYSIS

» Challenges

« Identifying possible root-cause signals
» Identifying delays between root-cause signals and break
+ Identifying and removing highly correlated signals (with no delay) to the break

* Result:
« A few interesting possible root-causes discovered

— Pressure x

.

—— wet-end break
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kaksoisimul.1.kammio vesimaara
wet-end break
20:15

— Fluid level y
— Quality z

break & possible root-causes
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DEPLOYED LEARNING ALGORITHMS

« LSTM _ BT
* Neural nets which have memory and feedback
» Can capture trends more easily
Sensor n M
« (Can be used to learn sequence to sequence problems b o 1 |
e | |
» Random forest

vl y2 y3 yi
(]

Constructs multiple decision trees on training data
« Generates a model in parallel

« Combines the results of all decision trees
« Can provide information on feature importance I .

» Cross correlation and Granger causality

HELSINGIN YLIOPISTO
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5. Are there decisions that can
be excluded from the
optimization scope, based
on what we know from the



Selective maintenance optimization

Experimental data
of failure times . W * oxo ox X X x ; x S
(Aarset, 1987)
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Selective maintenance optimization

« The objective is to maximize 7’ °
the reliability of the system 2
« Subject to maintenance time 3
and budget constraints _ . . |
Yk Binary variable defining whether unit
« We include the following (k, ) is replaced
bound: ARiJ. Improvement in realiabity of the unit
Yr.i = 07 Vk’,j = {(k’j)‘ARzJ < 0} (k, J), if component is replaced

|—> An order of magnitude reduction in solution time
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6. What is the actual value of
this data?



Conclusions

« We can see clear benefits from using more advanced methods to
process historical / on-line data

 Applying AI/ML methods can

«  Improve the accuracy of scheduling
«  Improve the predictability of processes
*  Help reducing the search domain of large-scale problems

« The data-related work is still very problem-specific

* A generic "cookbook” still missing to reduce the efforts

« The value of data is difficult to estimate (industry looking into
this) partially due to lack of access to business figures

 Collaboration across discplines is a prerequisite for success
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