

SINGPRO

Iiro Harjunkoski (School of Chemical Engineering) Keijo Heljanko (School of Science) Seminar, 15.10.2018

SINGPRO Project (2018-2019) Synergistic and intelligent process optimization

Academy of Finland project: Adj. Prof. Harjunkoski (Aalto CHEM) & Assoc. Prof. Heljanko (Aalto SCI)

SINGPRO Targets Create and prove novel concepts in real life

- Show that big data technologies can be deployed together with optimization strategies, to close the decision loop in automation
 - The results can help defining future research needs within systems-level integration of process control systems and data-driven decision making
- Collaborate with Finnish industry on piloting the methodology
 - Get access to real data, process information and the opportunity to discuss, test and demonstrate the solution approaches in practice
 - Create concepts that are re-usable across various industries

SINGPRO Project Team

Adj. Prof. Harjunkoski (Aalto CHEM) Prof. Heljanko (University of Helsinki)

Dr. Tewodros Deneke

Dr. Teemu Ikonen

Dr. Hossein Mostafaei

Sustainable & safe operations

Energy efficient
 Optimal throughput
 Well maintained in time
 Safe operating conditions
 On-time production
 Knowledge-based models
 Agile and adaptive decisions

Questions to be Answered (1/2)

- Often a production plan is already "old" soon after being rolled out to the plant floor
 - Could I do better planning by knowing more about the process, i.e. utilizing the real-time data?
- Schedules are usually based on average durations (tables)
 - Dynamically generating accurate statistics on process behaviour every time I want to schedule?
- Disturbances and breakdowns often come as a surprise
 - How many incidents can actually be predicted and avoided?

Questions to be Answered (2/2)

- Often we focus on the most obvious data assuming simple causality
 - What information actually is relevant for root-cause analysis? Are there hidden relationships?
- Many decisions in optimization add to the complexity
 - Are there decisions that can be excluded from the optimization scope?
- Data is mostly collected and stored only for troubleshooting
 - What is the actual value of this data?

SINGPRO Highlights Combine big data analytics with optimization

- Online, reactive and anticipative tools for sustainable and efficient operations
- Collaboration interfaces between scheduling optimization and big data analytics / machine learning resulting in more agile, self-aware and flexible decisions
- Combine first-principle models with machine learning in an efficient way to reduce the modeling complexity and efforts
- Create in a fully data driven fashion models of normal process behaviour and predictive models of process disruptions

SINGPRO Methodology Loop: Process \rightarrow Analytics \rightarrow Optimization

SINGPRO Research Activities Combine big data analytics with optimization

- Analyze process data across multiple domains using clustering, pattern matching, identification of causalities
- Create open and adjustable production scheduling models (discrete and continuous-time) and solution concepts for large-scale problems
- Run selected pilot case studies using industrial data on both production and supply chain level
- Build a cloud-based demonstrator built on an industrial platform following generic standards validated on multiple test cases

Summary of Ongoing Research

15.10.2018 10

Machine Learning Dr. Tewodros Deneke

- Starts with a raw data
- Data preprocessing
- Feature extraction
- Model training
- Prediction

Potential applications:

- Predictive maintenance
- Anomaly detection
- Parameter prediction
- AI planning
- Etc ...

Parameter Predictions in Scheduling Dr. Teemu Ikonen

Research aims

- Improve the quality of scheduling solutions via machine learning based (scheduling) parameter predictions
- Investigate the relationship between scheduled and realized schedules on real datasets

Primary machine learning methods

- Gaussian process regression
- Random forest regression

Scheduling models

• Mainly continuous-time representations

Planning and Scheduling Optimization Dr. Hossein Mostafaei

Aims and targets

- Modular and flexible scheduling models
- Hybrid optimization frameworks
- Decomposition schemes for large-scale

Scheduling models

- Based on discrete- and continuous-time
- Based on GDP (mainly convex-hull)
- Based on STN and RTN

15.10.2018

13

SINGPRO Collaboration

Scientific collaboration with world-leading academics: Carnegie Mellon University, University of Texas at Austin, University of Lisbon and Aalto.

• Combine cross-domains already in the research phase boosting out-of-the-box thinking and enabling a larger pool of methodologies and synergies of the existing research.

Industrial collaboration

- Identify partners that can provide larger data pools but also support technical deployment e.g. through platforms
- Define joint metrics for improvement

Machine Learning for Predictive Maintenance

Tewodros Deneke

Outline

- Overview & Research Problems
- Data Collection & Preparation
- Modeling & Prediction
- Future Directions

Overview & Research Problems

• Do we need maintenance?

Overview & Research Problems

• Overview and promise of predictive maintenance

Overview & Research Problems

• Machine Learning: learning from data

Data Collection

- To build a failure model, we need enough historical data
- Not all data is suitable for modeling
- What failures occur and which ones to model
- How parts of the system related to failures
- What can we measure
- Ideally should be done in collaboration
- Ideally data should be labeled

+		+					
	ts	sensor 1	sensor 2	sensor 3			label(status)
[2018-06-30	02:20	2.0781384267305	0.0	0.0	0.0	0.0	Normal
[2018-06-30	22:15	8.1508338325905	0.0	0.0	0.01	0.0	Normal
[2018-06-30	22:20	0.01	0.0	0.0	0.01	21.25	Break
[2018-06-30	22:40	0.01	0.01	0.0	0.01	0.0	Break
[2018-07-01	00:00	0.0	2.0781384267305074	5.851885143079255	12.802269182707134	0.0	Reduced
[2018-07-01	00:05	0.01	2.0541220825987976	4.988659846318233	17.416142154049563	0.0	Reduced
[2018-07-01	00:10	0.0	2.0831577652379085	6.695523312217311	13.68337741651033	0.0	Reduced
[2018-07-01	00:15	0.0	2.1082291935765465	5.8017552841541375	14.134423278098883	0.0	Normal
[2018-07-01	00:20	0.0	2.152975468408494	5.7489272980462935	15.922789619082497	3.0357142857142856	No
+	+	+	++	+	++		

20

Data Preparation

- Not all data is suitable for modeling
- Data might need to be transformed
- Normalization is often needed
- Feature selection / dimensionality reduction
- Data labeling in some cases

Modeling & Prediction

- The problem can be framed differently based on
 - Kind of output expected (prediction / classification)
 - Weather data is labeled or not (supervised / unsupervised)
 - The performance targets that the model should be optimized for?
- The choice of the learning algorithm is further influenced by
 - The proportion of the labels
 - What are the performance targets

Remaining Useful Life (RUL)

- How many time units are left before the system fails?
- Needs labeled data
- Labels are numeric
- Skewed scoring and cost function
- Model needs to capture temporal pattern

Failure Classification

- Will a machine fail in the next N time units?
- Needs labeled data
- Labels are categorical or boolean
- Could be multi-class (Normal / Reduced / Failure)

Anomaly Detection & Labeling

- Is the behaviour shown normal?
- Label unavailable or too few
- Can be used to create some sort of labeling
- Reconstruct observations, monitor residuals
- Cluster and detect outliers

LSTM Network

singpro²⁶

Challenges & Future Directions

- Missing value imputation
- Large scale model training
- Exploring anomaly detection approaches

Parameter prediction and realization in job shop scheduling

A Gaussian process approach

Teemu Ikonen and Iiro Harjunkoski 15th October 2018 SINGPRO seminar Aalto University

Outline*

- New York City taxi duration dataset
- Scheduling problem
- Methods
 - Prediction models
 - Scheduling model
- Results
- Conclusions and future work

*This work will also be presented in the AIChE annual meeting 2018 later this year.

New York City (NYC) taxi duration dataset

- Openly available dataset at
 <u>https://www.kaggle.com/c/nyc-taxi-trip-duration</u>
- Data of over 1.4 million taxi tips in NYC
- The ground truth is the trip duration
- Examples of features
 - Passenger count, pick-up and drop-off date, time and coordinates

Scheduling problem

- A company, head quartered at Wall street, performs surveys at remote sites in NYC
- Objective: minimize the make span of performing surveying trips at six different sites (Fig. 1)
- Surveying trip consists of outbound taxi trip, survey and inbound taxi trip (Fig. 2)
- Constraints:
 - Only two taxi trips can be performed at the same time
 - Only two surveys can be performed at the same time
- Durations of taxi trips are predicted, the surveys have a fixed duration of 1800 s

Fig. 1: An example set of surveying sites

Scheduling problem: industrial correspondence

Scheduling problem	Corresponding industrial examples		
Outbound taxi trip	Preparation, heating		
Inbound taxi trip	Cleaning, cooling		
Survey	Chemical reaction, mechanical operation		

Fig. 1: An example set of surveying sites

Prediction models

Prediction models, starting from the lowest fidelity

Prediction models: industrial correspondence

Prediction model	Industrial correspondence			
Average	A static table value, which is determined as an average of historical values			
Rate	A model which considers the task to have a constant processing rate (e.g. heating or purification of a volume of material)			

Prediction models: Gaussian process regression

- Kernel
 - Exponential kernel

$$\kappa(x, x') = \sigma_f^2 \exp\left(-\frac{\|x - x'\|}{2l^2}\right)$$

- Noise term
- Choosing the hyperparameters
 - Tuned using the maximum a posteriori (MAP) _{40.72°N} estimate

Scheduling model

- Unit-specific continuous-time scheduling model by Shaik and Floudas (2009)
- We use the value $\Delta n = 1$ (which defines the number of event points a job can span over)
- The number of total event points is determined by iteratively increasing *n* until the model has a feasible solution

Shaik, M.A. and Floudas, C.A. (2009). Novel unified modeling approach for short-term scheduling. *Industrial & Engineering Chemistry Research*, 48(6), 2947-2964.

Results: a single scheduling problem

Aalto University School of Chemical

Engineering

Results: 30 different scheduling problems

for which $r^2 = 1$ and RMSE = 0.

Results: 30 different scheduling problems

prediction model	\bar{ms} [-]		solution time [s]		
	mean	sd	mean	\min	max
average	1.178	0.119	4.45	4.25	5.74
rate	1.129	0.072	45.94	7.71	121.69
GP	1.109	0.061	79.66	16.44	344.82

Conclusions

 Job shop scheduling with data-driven duration prediction of three levels of fidelity is studied

Conclusions

- Job shop scheduling with data-driven duration prediction of three levels of fidelity is studied
- In the studied problem, the GP prediction model yields shorter make spans than average and rate prediction models by the margins of 5.8% and 1.8%, respectively

Conclusions

- Job shop scheduling with data-driven duration prediction of three levels of fidelity is studied
- In the studied problem, the GP prediction model yields shorter make spans than average and rate prediction models by the margins of 5.8% and 1.8%, respectively
- However, the computational cost of GP and rate prediction models are an order of magnitude higher than that of the average prediction model

Future work

- Proactive scheduling (e.g. adjustable robust optimization) with the uncertainty predictions from Gaussian process regression
- More complex scheduling problems

SINGPRO

Iiro Harjunkoski (School of Chemical Engineering) Keijo Heljanko (School of Science)