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SINGPRO Targets
Create and prove novel concepts in real life

• Show that big data technologies can be deployed together with 
optimization strategies, to close the decision loop in automation

• The results can help defining future research needs within systems-level 
integration of process control systems and data-driven decision making

• Collaborate with Finnish industry on piloting the methodology

• Get access to real data, process information and the opportunity to 
discuss, test and demonstrate the solution approaches in practice

• Create concepts that are re-usable across various industries

15.10.2018
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SINGPRO Project Team

Adj. Prof. Harjunkoski (Aalto CHEM) 

Prof. Heljanko (University of Helsinki)

Dr. Tewodros Deneke

Dr. Teemu Ikonen

Dr. Hossein Mostafaei
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Questions to be Answered (1/2)

• Often a production plan is already ”old” soon after being

rolled out to the plant floor

• Could I do better planning by knowing more about the process, i.e. 
utilizing the real-time data?

• Schedules are usually based on average durations (tables)

• Dynamically generating accurate statistics on process behaviour
every time I want to schedule?

• Disturbances and breakdowns often come as a surprise

• How many incidents can actually be predicted and avoided?

15.10.2018
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Questions to be Answered (2/2)

• Often we focus on the most obvious data assuming simple

causality

• What information actually is relevant for root-cause analysis? Are
there hidden relationships?

• Many decisions in optimization add to the complexity

• Are there decisions that can be excluded from the optimization
scope?

• Data is mostly collected and stored only for troubleshooting

• What is the actual value of this data?

15.10.2018
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SINGPRO Highlights
Combine big data analytics with optimization

- Online, reactive and anticipative tools for sustainable and efficient 
operations

- Collaboration interfaces between scheduling optimization and big 
data analytics / machine learning resulting in more agile, self-aware 
and flexible decisions

- Combine first-principle models with machine learning in an efficient 
way to reduce the modeling complexity and efforts

- Create - in a fully data driven fashion - models of normal process 
behaviour and predictive models of process disruptions

15.10.2018
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SINGPRO Methodology
Loop: Process Analytics Optimization

15.10.2018
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SINGPRO Research Activities
Combine big data analytics with optimization

- Analyze process data across multiple domains using clustering, 
pattern matching, identification of causalities

- Create open and adjustable production scheduling models (discrete 
and continuous-time) and solution concepts for large-scale problems

- Run selected pilot case studies using industrial data on both 
production and supply chain level

- Build a cloud-based demonstrator built on an industrial platform 
following generic standards validated on multiple test cases

15.10.2018
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Summary of 
Ongoing Research

15.10.2018
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Machine Learning
Dr. Tewodros Deneke

15.10.2018
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 Starts with a raw data 
 Data preprocessing
 Feature extraction 
 Model training   
 Prediction

Potential applications:
 Predictive maintenance  
 Anomaly detection
 Parameter prediction   
 AI planning
 Etc … 



Parameter Predictions in Scheduling
Dr. Teemu Ikonen

Research aims

• Improve the quality of scheduling solutions via machine learning based 
(scheduling) parameter predictions

• Investigate the relationship between scheduled and realized schedules on real 
datasets

Primary machine learning methods

• Gaussian process regression

• Random forest regression

Scheduling models

• Mainly continuous-time
representations

15.10.2018
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SINGPRO

Scheduling

Flexible and configurable Models 

GDP-MILP
STN or RTN

Full-space

Batch plant Scheduling
Various industrial 

applications

Hybrid

CP-MI(N)LP
MI(N)LP-
Heuristics

Large-scale

Planning and Scheduling Optimization
Dr. Hossein Mostafaei

Aims and targets

• Modular and flexible scheduling models

• Hybrid optimization frameworks

• Decomposition schemes for large-scale 

Scheduling models

• Based on discrete- and continuous-time

• Based on GDP (mainly convex-hull)

• Based on STN and RTN

15.10.2018
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SINGPRO Collaboration

Scientific collaboration with world-leading academics: Carnegie Mellon 
University, University of Texas at Austin, University of Lisbon and Aalto.

• Combine cross-domains already in the research phase boosting out-of-the-box 
thinking and enabling a larger pool of methodologies and synergies of the 
existing research. 

Industrial collaboration

• Identify partners that can provide larger data
pools but also support technical deployment
e.g. through platforms

• Define joint metrics for improvement

15.10.2018
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Machine Learning for 

Predictive Maintenance

Tewodros Deneke



Outline 

● Overview & Research Problems

● Data Collection & Preparation 

● Modeling & Prediction

● Future Directions
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Overview & Research Problems

● Do we need maintenance?   

17



Overview & Research Problems

● Overview and promise of predictive maintenance   
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Overview & Research Problems

● Machine Learning: learning from data   
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Data Collection

● To build a failure model, we need enough historical data

● Not all data is suitable for modeling

● What failures occur and which ones to model

● How parts of the system related to failures

● What can we measure

● Ideally should be done in collaboration 

● Ideally data should be labeled
+--------------------+---------------+------------------+------------------+------------------+------------------+------------------+

|                  ts|       sensor 1|          sensor 2|          sensor 3|               ...|               ...|     label(status)|

+--------------------+---------------+------------------+------------------+------------------+------------------+------------------+

|[2018-06-30 02:20...|2.0781384267305|               0.0|               0.0|               0.0|               0.0|            Normal|

|[2018-06-30 22:15...|8.1508338325905|               0.0|               0.0|               0.0|               0.0|            Normal|

|[2018-06-30 22:20...|            0.0|               0.0|               0.0|               0.0|             21.25|             Break|

|[2018-06-30 22:40...|            0.0|               0.0|               0.0|               0.0|               0.0|             Break|

|[2018-07-01 00:00...|            0.0|2.0781384267305074| 5.851885143079255|12.802269182707134|               0.0|           Reduced|

|[2018-07-01 00:05...|            0.0|2.0541220825987976| 4.988659846318233|17.416142154049563|               0.0|           Reduced|

|[2018-07-01 00:10...|            0.0|2.0831577652379085| 6.695523312217311| 13.68337741651033|               0.0|           Reduced|

|[2018-07-01 00:15...|            0.0|2.1082291935765465|5.8017552841541375|14.134423278098883|               0.0|            Normal|

|[2018-07-01 00:20...|            0.0| 2.152975468408494|5.7489272980462935|15.922789619082497|3.0357142857142856|            Normal|

+--------------------+---------------+------------------+------------------+------------------+------------------+------------------+
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Data Preparation

● Not all data is suitable for modeling

● Data might need to be transformed

● Normalization is often needed

● Feature selection / dimensionality reduction   

● Data labeling in some cases

21



Modeling & Prediction 

● The problem can be framed differently based on
○ Kind of output expected (prediction / classification)

○ Weather data is labeled or not (supervised / unsupervised)

○ The performance targets that the model should be optimized for? 

● The choice of the learning algorithm is further influenced by 
○ The proportion of the labels

○ What are the performance targets 
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Remaining Useful Life (RUL)

● How many time units are left before the system fails?

● Needs labeled data

● Labels are numeric  

● Skewed scoring and cost function

● Model needs to capture temporal pattern

23



Failure Classification 

● Will a machine fail in the next N time units?

● Needs labeled data

● Labels are categorical or boolean 

● Could be multi-class (Normal / Reduced / Failure )

24



Anomaly Detection & Labeling 

● Is the behaviour shown normal?

● Label unavailable or too few 

● Can be used to create some sort of labeling

● Reconstruct observations, monitor residuals

● Cluster and detect outliers  

25



LSTM Network
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Challenges & Future Directions

● Missing value imputation 

● Large scale model training

● Exploring anomaly detection approaches  

27



Parameter prediction and 
realization in job shop scheduling

Teemu Ikonen and Iiro Harjunkoski
15th October 2018
SINGPRO seminar
Aalto University

A Gaussian process approach



Outline*

• New York City taxi duration dataset

• Scheduling problem

• Methods

• Prediction models

• Scheduling model

• Results

• Conclusions and future work

*This work will also be presented in the AIChE annual meeting 2018 
later this year. 

15.10.2018
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New York City (NYC) taxi duration 
dataset
• Openly available dataset at 

https://www.kaggle.com/c/nyc-taxi-trip-

duration

• Data of over 1.4 million taxi tips in NYC

• The ground truth is the trip duration

• Examples of features

• Passenger count, pick-up and drop-off date, 
time and coordinates

15.10.2018
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Scheduling problem

• A company, head quartered at Wall street, performs 

surveys at remote sites in NYC

• Objective: minimize the make span of performing 

surveying trips at six different sites (Fig. 1)

• Surveying trip consists of outbound taxi trip, 

survey and inbound taxi trip (Fig. 2)

• Constraints:
• Only two taxi trips can be performed at the same time

• Only two surveys can be performed at the same time

• Durations of taxi trips are predicted, the surveys 

have a fixed duration of 1800 s

Fig. 2: Procedure of performing a 

surveying trip

Fig. 1: An example set of surveying sites

15.10.2018
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Scheduling problem: industrial 
correspondence

Fig. 2: Procedure of performing a 

surveying trip

Fig. 1: An example set of surveying sites

Scheduling problem Corresponding industrial 

examples

Outbound taxi trip Preparation, heating

Inbound taxi trip Cleaning, cooling

Survey Chemical reaction, mechanical 

operation

15.10.2018
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Prediction models

Prediction models, starting from the lowest fidelity

RMSE = the root mean square error

𝑟2 = the coefficient of determination

1) Average model 2) Rate model 3) Gaussian process (GP) model

15.10.2018
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Prediction models: industrial 
correspondence

Prediction model Industrial correspondence

Average A static table value, which is determined as an average of 

historical values

Rate A model which considers the task to have a constant 

processing rate (e.g. heating or purification of a volume of 

material)

15.10.2018
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Prediction models: Gaussian process 
regression
• Kernel

• Exponential kernel

κ 𝑥, 𝑥′ = 𝜎𝑓
2exp −

𝑥 − 𝑥′

2𝑙2

• Noise term

• Choosing the hyperparameters

• Tuned using the maximum a posteriori (MAP) 
estimate

15.10.2018
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Scheduling model

• Unit-specific continuous-time scheduling model by Shaik and 

Floudas (2009)

• We use the value ∆𝒏 = 𝟏 (which defines the number of event 

points a job can span over)

• The number of total event points is determined by iteratively

increasing 𝒏 until the model has a feasible solution

Shaik, M.A. and Floudas, C.A. (2009). Novel unified modeling approach for short-term 

scheduling. Industrial & Engineering Chemistry Research, 48(6), 2947-2964.

15.10.2018
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Results: a single scheduling problem

Optimized and realized schedules of 

six tasks, consisting of outbound 

taxi, survey, and inbound taxi

15.10.2018
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Results: 30 different scheduling 
problems

The reference model is the ideal predictor,

for which 𝒓𝟐 = 𝟏 and RMSE = 𝟎.

15.10.2018
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Results: 30 different scheduling 
problems

15.10.2018
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Conclusions

• Job shop scheduling with data-driven duration prediction of 

three levels of fidelity is studied

15.10.2018
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Conclusions

• Job shop scheduling with data-driven duration prediction of 

three levels of fidelity is studied

• In the studied problem, the GP prediction model yields shorter 

make spans than average and rate prediction models by the 

margins of 5.8% and 1.8%, respectively

15.10.2018
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Conclusions

• Job shop scheduling with data-driven duration prediction of 

three levels of fidelity is studied

• In the studied problem, the GP prediction model yields shorter 

make spans than average and rate prediction models by the 

margins of 5.8% and 1.8%, respectively

• However, the computational cost of GP and rate prediction 

models are an order of magnitude higher than that of the 

average prediction model

15.10.2018
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Future work

• Proactive scheduling (e.g. adjustable robust optimization) with 

the uncertainty predictions from Gaussian process regression

• More complex scheduling problems

15.10.2018
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