Combining Data Analytics and
Scheduling — SINGPRO
Results and Open Challenges

Iiro Ijllcarjunkoskib% Teemu Ikonen', Hossein Mostafaei', Keijo Heljanko3 and Tewodros
Denekes3.

DAalto University, 2ABB Power Grids Germany, 3 University of Helsinki
SINGPRO Seminar, 19.11.2019



SINGPRO Project (2018-2019)

Synergistic and intelligent process optimization

Academy of Finland project: Adj. Prof. Harjunkoski (Aalto
CHEM) & Prof. Heljanko (University of Helsinki)

’ -------------------
,’ SINGPRO Robust & agile schedules Sustainable & safe operations
] Adapted/correlated models
| . s .
I M.a rkets/ = v’ Energy efficient
: Environment v/ Optimal throughput
I v Well maintained in time
| v’ Safe operating conditions
| Analytics Planning & v On-time production
I Big Data Scheduling v’ Knowledge-based models
: v’ Agile and adaptive
I decisions
I‘ Processes / Equipment

A Aalto University .4..1;‘1(("
School of Chemical NS 22.11.2019
B Engineering Nirg o

singpre 2



SINGPRO Targets

Create and prove novel concepts in real life

- Show that big data technologies can be deployed together with
optimization strategies, to close the decision loop in automation

» The results can help defining future research needs within systems-level
integration of process control systems and data-driven decision making

» Collaborate with Finnish industry on piloting the methodology

» Get access to real data, process information and the opportunity to
discuss, test and demonstrate the solution approaches in practice

» Create collaborative concepts that are re-usable across various
industries
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Questions to be Answered (1/2)

« Often a production plan is already ”old” soon after being
rolled out to the plant floor

1. Could I do better planning by knowing more about the process, i.e.
utilizing the real-time data?

« Schedules are usually based on average durations (tables)

2. Is it better to dynamically generate accurate statistics on process
behaviour every time I want to schedule?

« Disturbances and breakdowns often come as a surprise
3. How many incidents can actually be predicted and avoided?

School of Chemical N7 22.11.2019
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Questions to be Answered (2/2)

« Often we focus on the most obvious data assuming simple
causality

4. What information actually is relevant for root-cause analysis? Are
there hidden relationships?

« Many decisions in optimization add to the complexity

5. Are there decisions that can be excluded from the optimization
scope, based on what we know from the data?

« Datais mostly collected and stored only for troubleshooting
6. What is the actual value of this data?
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SINGPRO Highlights

Combine big data analytics with optimization

Need to develop and focus on:

- Online, reactive and anticipative tools for sustainable and efficient
operations

- Collaboration interfaces between scheduling optimization and big
data analytics / machine learning resulting in more agile, self-aware
and flexible decisions

- Combine first-principle models with machine learning in an efficient
way to reduce the modeling complexity and efforts

- Create - in a fully data driven fashion - models of normal process
behaviour and predictive models of process disruptions
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Example Collaboration Loop
Process = Analytics = Optimization

Historical data :
Online data

0
Evaluation
Process
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1. Could | do better planning
by knowing more about the
process, I.e. utilizing the
real-time data?
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Data Driven Model for Grade
Change in P&P Process

Combining data analytics and machine learning with
a rigorous scheduling model in an integrated fashion

Heuristic constraints derived from the data analytics 0% W GBI TR 3
methods allow faster performance Occurrence table obtained

from historical data
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Case Study Results

Two weeks: due date 1= 168 h, due date 2= 336 h for 20 grades

Objective: minimize grade change transition time and
production runs

Full-space Data-driven
#Production runs 16 17 16 17
CPU(s)* 18000 18000 4143.4 6974.6
#Constraints 8773 9340 5263 5596
Objective ($) 58536.1 50613.8 53988.8 50338.8 (0.5% i)
Relative gap 76.08 72.14 0 0

*GAMS/CPLEX 12.7.1 (Intel i5-7300U, 2.60 GHz, 8 GB of RAM, Windows 10, 64-bit)
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Reinforcement Learning (RL) of
Online Rescheduling Decisions

Questions: 7

* When to trigger a new
rescheduling procedure?

« Mathematical programming or
a heuristic algorithm?

 How far ahead to schedule
(i.e. horizon length)?

« How much computing

Optimizer

scheduling

information

resource to allocate?
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Reinforcement Learning (RL) of
Online Rescheduling Decisions

action

Agent >

T state

reward

Environment




Reinforcement Learning (RL) of
Online Rescheduling Decisions
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State and Action Spaces
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State and Action Spaces

state

Category 1: deviations in action
optimization parameters :

(e.g., processing times,

material yields)

e /O No rescheduling
Category 2: discrete changes o Heuristic algorithm
in the process environment é’.\% h I d d en :é.é Mathematical programming
(e.g., new orders, equipment : :
breakdowns) - nhodes E{% Horizon length

S Allocated computing time

optimizer (e.g., remaining
computing resource, . ..
remaining solution time of reschedulin g timing an d
the ongoing rescheduling) 0 ptl mization strate gy

(Decisions 1 & 2)

Category 3: state of the {
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First Results

A

RL algorithm: Neuroevolution of Augmenting Topologies (NEAT)
(Stanley and Miikkulainen, 2002)
Simplified decision space:

« Rescheduling timing

« Computing resource allocation

On three test cases, better closed loop schedules than by
periodic rescheduling by margins of 4.1 to 15.2%

periodic{ | [ [ [ [ [ [ [ [ | [ [ e
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2. 1s It better to dynamically
generate accurate statistics on
process behavior every time |
want to schedule?



Scheduling problem based on the
NYC taxi data

Openly available dataset at https://www.kaggle.com/c/nyc-taxi-trip-duration

Data of over 1.4 million taxi tips in NYC 4000
4 T :
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Scheduling problem based on the
data
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3) Gaussian process (GP) model
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Scheduling problem based on the
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3. How many incidents can
actually be predicted and
avolded?



OVERVIEW: BREAK PREDICTION MODELING

Predictions
near-break/normal
J

Predict

Raow Data cj \
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‘ Processing J Extroction Data with Training

' cleaned and

' scaled data

only selected f
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PREPROCESSING: DATA REPRESENTATION

@® Ideally we want the data be arranged as:

sensor 1 sensor 2 ... sensor n status

ts 1

tsi2

ts 3

ts n

HELSINGIN YLIOPISTO
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DATASET DECOMPRESSION

@® Plant data dump is delta-compressed as:

tag 1 (val 1 |ts 1 tag 2 |val 2 | ts 2 tag n (val n | ts

Variable no. columns at different timestamps

Around 3.5M tags over a day, 322M over two months and 1.4B over a year
More than 1000 sensors

Translate data representation

Decode ground truth (status of the machine)

Null values, Different sampling rates, etc.

HELSINGIN YLIOPISTO
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PREPROCESSING

» Next data preprocessing steps:

Cleaning: removing secondary breaks caused by a primary one
Resampling: to have a common sampling rate among signals
Slicing: selecting near-break and normal operation regions
Scaling: balancing differences in amplitude
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PREDICTION

» Model 1: Can we distinguish break from non-break?
« Samples that are before a break are used as class one

« Samples that are during the break are used as class
two

* The task is to predict (distinguish) these two classes

* Result:
» Trivial: 96.7% accuracy

» Highly influenced by signals highly correlated with
break signal

* Falils to identify root-causes
* Not valuable in practice

HELSINGIN YLIOPISTO
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PREDICTION

* Model 2: Can we distinguish near-break from normal?

« Samples that are further away from a break are used as
class one

« Samples that are just before a break are used as class two
» The task is to predict (distinguish) these two classes

* Result:

» Fairly low prediction accuracy
» ldentifying main features used in prediction: Root-causes
« Potential root-causes need domain expert analysis

« Can still pick up highly correlated signals (often these are
data cleaning problems)

 Idea: Try to identify signals that have time varying
correlations, and use only them in prediction

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
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CORRELATION BASED FEATURE EXTRACTION

@ Calculate correlation of all signals to wet-end break at various lags (0 to 20 min)
@® Remove highly correlated signals at lag zero (probably not causes of the break)
@ Keep signals that show the most increasing correlation trend (sorted at lag 8 min)
@ Just use the top 20 signals in the prediction model: Improves accuracy

Correlation trend at various lags
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LATENT FEATURE WITH AUTOENCODERS

@® Ongoing work
@® Why the need?
O Data understanding
O Latent variables and dynamics discovery
O Automatic data clean-up before prediction modeling
@® How
O Train an Autoencoder (approx. lossy compression) and visualize the encoder output

Input Output
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FINDINGS

@ Data cleaning is difficult without domain expert help

O Breaks cause breaks: A break can be more easily predicted if it is preceded by a break
@ Prediction accurary is still low: Very complex process with 1000+ sensors

@ Machine learning algorithms can provide root cause candidates
O Evaluating root cause candidates requires a lot of domain expertise

O Many data cleanup problems were detected by looking at candidate root causes

s Example: Break signal is sampled at low frequency, which was
detected only by looking at highly correlated root cause

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET 82
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4. What information actually is
relevant for root-cause
analysis? Are there hidden
relationships?



ROOT-CAUSE ANALYSIS

» Challenges
» Identifying possible root-cause signals
* ldentifying delays between root-cause signals and break
« ldentifying and removing highly correlated signals (with no delay) to the break

— A: Using the features reported to be used by the machine learning model, or
— B: Using Granger Causality.

* Result: .
» Afew interesting possible root-causes discovered ‘

—— wet-end break
signal 1
signal 2

— Pressure x
— Fluid level y
— Quality z

break & possible root-causes
- s ° o

wet-end break
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CORRELATION VS CAUSALITY

(Granger) causality quantifies the extent to
which one time series is predictive of another.

 Most classical methods of estimating Granger
causality assume linear timeseries.

* More recent approaches of estimating
Granger causality for nonlinear timeseries are
not generic.

« Applicable for increasing predictive model SR R
interpretability, feature selection and root
cause analysis (e.g. what caused a paper
machine break?)

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
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BACKGROUND & PROBLEM FORMULATION

» Granger causality
« Cause is prior to effect.

- The cause makes unique changes in the effect (i.e.
contains unique info. about it).

« If a signal X "Granger-causes" (or "G-causes") a
signal Y, then past values of X should contain
information that helps predict Y above and beyond
the information contained in past values of Y alone.
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BACKGROUND & PROBLEM FORMULATION

» Quantifying Granger causality estimation

« Accuracy difference between a model with or without
a lagged version of a predictor variable.

 But that means retraining our model no. lag * no.
predictors times. Any better solution?

« What if we permute or apply noise on each predictor
during prediction (evaluation) instead of fully

dropping it and retraining?

 The features for which such permutation causes
accuracy of prediction to drop seem to be used by
the machine learning model to predict accurately

« This gives us an alternative way to find root causes

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI
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DEPLOYED LEARNING ALGORITHMS

« LSTM W G
Sensor 1
* Neural nets which have memory and feedback
. Sensor 3 W
« Can capture trends more easily R i L 2 et
Sensor n \W
« Can be used to learn sequence to sequence problems [ | |
e | |
« Random forest

Constructs multiple decision trees on training data
« Generates a model in parallel

« Combines the results of all decision trees

Can provide information on feature importance

* Cross correlation and Granger causality

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI
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SIMULATION EXPERIMENTS

» Linear Vector Autoregressive Model

Simulated VAR model with known sparse A matrix.

Make prediction of each variable using all others as
predictors.

Permute each predictor variable and make prediction again.

Calculate variable dependency based on reduction in
accuracy (R2).

True RF LSTM

".__ s
F. b e
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Table 2: VAR results (AUROC)

T 500 1000 5000
RF 97.62 99.80 100.0
LSTM 85.72 92.03 100.0

22/11/2019
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SIMULATION EXPERIMENTS

* Nonlinear Lorenz96 Model

« Simulated data using Lorenz96 model with a given forcing

value. Such model is often used to model climate dynamics.

- Make prediction of each variable using all others as
predictors.

« Permute each predictor variable and make prediction again.

» Calculate variable dependency based on reduction in
accuracy (R2).

True RF Sl
1 .

HELSINGIN YLIOPISTO
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Table 1: Lorenz96 results (AUROC)

F 10 10 40 40
T 500 1000 500 1000
RF 98.46 99.95 88.44 98.89

LSTM 80.82 95.85 71.41 73.65

22/11/2019
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5. Are there decisions that can
be excluded from the
optimization scope, based
on what we know from the



Selective maintenance optimization

Experimental data
. . b4 bYe b4 X x %4 x
*® X x x x x X xXx
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Selective maintenance optimization

« The objective is to maximize 7’ °
the reliability of the system 2
« Subject to maintenance time 3
and budget constraints _ . . |
Yk Binary variable defining whether unit
 We include the following (k, ) is replaced
bound: ARiJ. Improvement in realiabity of the unit
Yr.i = 07 Vk’,j = {(k}j)\AR}” < 0} (k, J), if component is replaced

|—> An order of magnitude reduction in solution time

Aalto University
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6. What is the actual value of
this data?



Conclusions

« We can see clear benefits from using more advanced methods to
process historical / on-line data

 Applying AI/ML methods can

«  Improve the accuracy of scheduling
«  Improve the predictability of processes
*  Help reducing the search domain of large-scale problems

« The data-related work is still very problem-specific

* A generic "cookbook” still missing to reduce the efforts

« The value of data is difficult to estimate (industry looking into
this) partially due to lack of access to business figures

 Collaboration across discplines is a prerequisite for success

Aalto University J‘If(((“
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Break Prediction Conclusions

« The paper machine breaks are difficult to predict

« Domain expert help is needed in many cases of the problem
« Specifying the right question to predict
« Specifying data cleaning principles
- Evaluating potential root causes

« Debugging machine data cleaning
« Indentifying potential true root causes

 Machine learning cannot be done successfully without
access to domain experts

' Aalto University .“Ii((@
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