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SINGPRO Targets
Create and prove novel concepts in real life

• Show that big data technologies can be deployed together with 
optimization strategies, to close the decision loop in automation

• The results can help defining future research needs within systems-level 
integration of process control systems and data-driven decision making

• Collaborate with Finnish industry on piloting the methodology

• Get access to real data, process information and the opportunity to 
discuss, test and demonstrate the solution approaches in practice

• Create collaborative concepts that are re-usable across various 
industries

22.11.2019
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Questions to be Answered (1/2)

• Often a production plan is already ”old” soon after being

rolled out to the plant floor

1. Could I do better planning by knowing more about the process, i.e. 
utilizing the real-time data?

• Schedules are usually based on average durations (tables)

2. Is it better to dynamically generate accurate statistics on process 
behaviour every time I want to schedule?

• Disturbances and breakdowns often come as a surprise

3. How many incidents can actually be predicted and avoided?

22.11.2019
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Questions to be Answered (2/2)

• Often we focus on the most obvious data assuming simple

causality

4. What information actually is relevant for root-cause analysis? Are
there hidden relationships?

• Many decisions in optimization add to the complexity

5. Are there decisions that can be excluded from the optimization 
scope, based on what we know from the data?

• Data is mostly collected and stored only for troubleshooting

6. What is the actual value of this data?

22.11.2019
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SINGPRO Highlights
Combine big data analytics with optimization

Need to develop and focus on:

- Online, reactive and anticipative tools for sustainable and efficient 
operations

- Collaboration interfaces between scheduling optimization and big 
data analytics / machine learning resulting in more agile, self-aware 
and flexible decisions

- Combine first-principle models with machine learning in an efficient 
way to reduce the modeling complexity and efforts

- Create - in a fully data driven fashion - models of normal process 
behaviour and predictive models of process disruptions

22.11.2019
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Example Collaboration Loop
Process Analytics Optimization

22.11.2019
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1. Could I do better planning 

by knowing more about the 

process, i.e. utilizing the 

real-time data?



Historical data
Data analytics

(a) (b)

Data Driven Model for Grade 
Change in P&P Process
Combining data analytics and machine learning with 
a rigorous scheduling model in an integrated fashion

Heuristic constraints derived from the data analytics 
methods allow faster performance

22.11.2019
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𝐼𝑖 = Set of grades that can 
follow grade 𝑖

𝑋𝑖,𝑟 = 1 if production run 𝑟

processes grade 𝑖

Occurrence table obtained 
from historical data



Historical data
Data analytics

(a) (b)

Data Driven Model for Grade 
Change in P&P Process
Combining data analytics and machine learning with 
a rigorous scheduling model in an integrated fashion

Heuristic constraints derived from the data analytics 
methods allow faster performance

22.11.2019
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Occurrence table obtained 
from historical data

Considerable reduction in the number of constraints

Parameter: 
Transition 
time between 
grades 𝑖 and 𝑖’



Case Study Results

Two weeks: due date 1= 168 h, due date 2= 336 h for 20 grades

Objective: minimize grade change transition time and 
production runs

22.11.2019
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Reinforcement Learning (RL) of 

Online Rescheduling Decisions

13

Questions:

• When to trigger a new 

rescheduling procedure?

• Mathematical programming or 

a heuristic algorithm? 

• How far ahead to schedule 

(i.e. horizon length)?

• How much computing 

resource to allocate?



Reinforcement Learning (RL) of 

Online Rescheduling Decisions

14



Reinforcement Learning (RL) of 

Online Rescheduling Decisions
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State and Action Spaces

changes in the 

environment (i.e. 

the process and 

the optimizer

rescheduling 

decisions
hidden 

nodes
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State and Action Spaces

rescheduling 

decisions
hidden 

nodes
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hidden 

nodes

rescheduling timing and 

optimization strategy

(Decisions 1 & 2)



First Results
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• RL algorithm: Neuroevolution of Augmenting Topologies (NEAT) 

(Stanley and Miikkulainen, 2002)

• Simplified decision space:

• Rescheduling timing

• Computing resource allocation

• On three test cases, better closed loop schedules than by 

periodic rescheduling by margins of 4.1 to 15.2%

order date
due date



2. Is it better to dynamically 

generate accurate statistics on 

process behavior every time I 

want to schedule?



Scheduling problem based on the 

NYC taxi data
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Openly available dataset at https://www.kaggle.com/c/nyc-taxi-trip-duration

Data of over 1.4 million taxi tips in NYC

The ground truth is the trip duration

Examples of features: Passenger count, pick-
up and drop-off dates, time and coordinates

https://www.kaggle.com/c/nyc-taxi-trip-duration


Scheduling problem based on the 

NYC taxi data
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RMSE = the root mean square error

𝑟2 = the coefficient of determination

1) Average model 2) Rate model 3) Gaussian process (GP) model



Scheduling problem based on the 

NYC taxi data
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The reference model is the ideal predictor,

for which 𝒓𝟐 = 𝟏 and RMSE = 𝟎.



3. How many incidents can 

actually be predicted and 

avoided?



Matemaattis-luonnontieteellinen tiedekunta 22/11/2019 24

OVERVIEW: BREAK PREDICTION MODELING



Matemaattis-luonnontieteellinen tiedekunta

PREPROCESSING: DATA REPRESENTATION

● Ideally we want the data be arranged as:

sensor 1 sensor 2 ... sensor n status

ts 1

ts 2

ts 3

...

ts n



Matemaattis-luonnontieteellinen tiedekunta

DATASET DECOMPRESSION

● Plant data dump is delta-compressed as:

● Variable no. columns at different timestamps

● Around 3.5M tags over a day, 322M over two months and 1.4B over a year

● More than 1000 sensors

● Translate data representation

● Decode ground truth (status of the machine) 

● Null values, Different sampling rates, etc. 

tag 1 val 1 ts 1 tag 2 val 2 ts 2 ... tag n val n ts n



Matemaattis-luonnontieteellinen tiedekunta

• Next data preprocessing steps:

• Cleaning: removing secondary breaks caused by a primary one  

• Resampling: to have a common sampling rate among signals

• Slicing: selecting near-break and normal operation regions

• Scaling: balancing differences in amplitude 

22/11/2019 27

PREPROCESSING



Matemaattis-luonnontieteellinen tiedekunta

• Model 1: Can we distinguish break from non-break? 

• Samples that are before a break are used as class one

• Samples that are during the break are used as class 
two 

• The task is to predict (distinguish) these two classes 

• Result:  

• Trivial: 96.7% accuracy 

• Highly influenced by signals highly correlated with 
break signal

• Fails to identify root-causes

• Not valuable in practice 

22/11/2019 28

PREDICTION



Matemaattis-luonnontieteellinen tiedekunta

• Model 2: Can we distinguish near-break from normal? 

• Samples that are further away from a break are used as 
class one 

• Samples that are just before a break are used as class two 

• The task is to predict (distinguish) these two classes

• Result:

• Fairly low prediction accuracy

• Identifying main features used in prediction: Root-causes

• Potential root-causes need domain expert analysis

• Can still pick up highly correlated signals (often these are 
data cleaning problems)

• Idea: Try to identify signals that have time varying 
correlations, and use only them in prediction

22/11/2019 29

PREDICTION



Matemaattis-luonnontieteellinen tiedekunta

CORRELATION BASED FEATURE EXTRACTION

● Calculate correlation of all signals to wet-end break at various lags (0 to 20 min) 

● Remove highly correlated signals at lag zero (probably not causes of the break)

● Keep signals that show the most increasing correlation trend (sorted at lag 8 min)

● Just use the top 20 signals in the prediction model: Improves accuracy

Correlation trend at various lags  Maximum correlation values out of 20 lags for 

top 20 interesting signals
Maximum correlation values out of 20 lags for 

top 300 interesting signals



Matemaattis-luonnontieteellinen tiedekunta

LATENT FEATURE WITH AUTOENCODERS

● Ongoing work

● Why the need?
○ Data understanding 

○ Latent variables and dynamics discovery

○ Automatic data clean-up before prediction modeling

● How
○ Train an Autoencoder (approx. lossy compression) and visualize the encoder output 



Matemaattis-luonnontieteellinen tiedekunta

FINDINGS

● Data cleaning is difficult without domain expert help

○ Breaks cause breaks: A break can be more easily predicted if it is preceded by a break

● Prediction accurary is still low: Very complex process with 1000+ sensors

● Machine learning algorithms can provide root cause candidates

○ Evaluating root cause candidates requires a lot of domain expertise

○ Many data cleanup problems were detected by looking at candidate root causes

■ Example: Break signal is sampled at low frequency, which was

detected only by looking at highly correlated root cause

32



4. What information actually is 

relevant for root-cause 

analysis? Are there hidden 

relationships?



Matemaattis-luonnontieteellinen tiedekunta

• Challenges 

• Identifying possible root-cause signals 

• Identifying delays between root-cause signals and break 

• Identifying and removing highly correlated signals (with no delay) to the break

‒ A: Using the features reported to be used by the machine learning model, or

‒ B: Using Granger Causality.

• Result: 

• A few interesting possible root-causes discovered 

‒ Pressure x

‒ Fluid level y

‒ Quality z

22/11/2019 34

ROOT-CAUSE ANALYSIS



Matemaattis-luonnontieteellinen tiedekunta

• (Granger) causality quantifies the extent to 
which one time series is predictive of another. 

• Most classical methods of estimating Granger 
causality assume linear timeseries.

• More recent approaches of estimating 
Granger causality for nonlinear timeseries are 
not generic.

• Applicable for increasing predictive model 
interpretability, feature selection and root 
cause analysis (e.g. what caused a paper 
machine break?)

22/11/2019 35

CORRELATION VS CAUSALITY



Matemaattis-luonnontieteellinen tiedekunta

• Granger causality

• Cause is prior to effect.

• The cause makes unique changes in the effect (i.e. 
contains unique info. about it).

• If a signal X "Granger-causes" (or "G-causes") a 
signal Y, then past values of X should contain 
information that helps predict Y above and beyond 
the information contained in past values of Y alone.

22/11/2019Causality Discovery / Tewodros Deneke 36

BACKGROUND & PROBLEM FORMULATION



Matemaattis-luonnontieteellinen tiedekunta

• Quantifying Granger causality estimation

• Accuracy difference between a model with or without 
a lagged version of a predictor variable.

• But that means retraining our model no. lag * no. 
predictors times. Any better solution?   

• What if we permute or apply noise on each predictor 
during prediction (evaluation) instead of fully 
dropping it and retraining?

• The features for which such permutation causes 
accuracy of prediction to drop seem to be used by 
the machine learning model to predict accurately

• This gives us an alternative way to find root causes

22/11/2019Causality Discovery / Tewodros Deneke 37

BACKGROUND & PROBLEM FORMULATION



Matemaattis-luonnontieteellinen tiedekunta

• LSTM

• Neural nets which have memory and feedback

• Can capture trends more easily

• Can be used to learn sequence to sequence problems 

• Random forest

• Constructs multiple decision trees on training data

• Generates a model in parallel

• Combines the results of all decision trees

• Can provide information on feature importance 

• Cross correlation and Granger causality

22/11/2019 38

DEPLOYED LEARNING ALGORITHMS



Matemaattis-luonnontieteellinen tiedekunta

• Linear Vector Autoregressive Model 

• Simulated VAR model with known sparse A matrix.

• Make prediction of each variable using all others as 
predictors.

• Permute each predictor variable and make prediction again. 

• Calculate variable dependency based on reduction in 
accuracy (R2).

22/11/2019 39

SIMULATION EXPERIMENTS

True LSTMRF



Matemaattis-luonnontieteellinen tiedekunta

• Nonlinear Lorenz96 Model 

• Simulated data using Lorenz96 model with a given forcing 
value. Such model is often used to model climate dynamics. 

• Make prediction of each variable using all others as 
predictors.

• Permute each predictor variable and make prediction again. 

• Calculate variable dependency based on reduction in 
accuracy (R2).  

22/11/2019 40

SIMULATION EXPERIMENTS

True RF LSTM



5. Are there decisions that can 

be excluded from the 

optimization scope, based 

on what we know from the 

data?



Selective maintenance optimization

42

Experimental data

of failure times 

(Aarset, 1987)

Sarhan and Apaloo (2013)

replacement 

not sensible

replacement 

not sensible



Selective maintenance optimization
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• The objective is to maximize 

the reliability of the system

• Subject to maintenance time 

and budget constraints

• We include the following 

bound:

An order of magnitude reduction in solution time

𝒚𝒌,𝒋 Binary variable defining whether unit 

(k, j) is replaced

∆𝑹𝒌,𝒋
𝒚

Improvement in realiabity of the unit

(k, j), if component is replaced



6. What is the actual value of 

this data?



Conclusions

• We can see clear benefits from using more advanced methods to 

process historical / on-line data

• Applying AI/ML methods can
• Improve the accuracy of scheduling

• Improve the predictability of processes

• Help reducing the search domain of large-scale problems

• The data-related work is still very problem-specific
• A generic ”cookbook” still missing to reduce the efforts

• The value of data is difficult to estimate (industry looking into 

this) partially due to lack of access to business figures

• Collaboration across discplines is a prerequisite for success

45
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Break Prediction Conclusions

• The paper machine breaks are difficult to predict

• Domain expert help is needed in many cases of the problem

• Specifying the right question to predict

• Specifying data cleaning principles

• Evaluating potential root causes
• Debugging machine data cleaning

• Indentifying potential true root causes

• Machine learning cannot be done successfully without

access to domain experts

22.11.2019
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