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‘* Big Data

m Seagate sponsored IDC study estimates the Global
Datasphere to be 33 Zettabytes (33 000 000 000
TB) in 2018 and to grow to 175 Zettabytes by 2025

m Data comes from: Video, sensor data, Internet
sites, social media, Al Applications, healthcare, ...

m For example Netflix is collecting 1 PB of data per
month from its video service user behaviour, total
data warehouse 60+ PB

m According to Cisco, Internet traffic volume is
growing 30% per year, while Big Data storage is
growing 51% per year



‘. Some Example Big Data Applications

m Web Search - Google, Bing

m Video Streaming and Recommendation - Netflix,
Youtube

m Social Media & Advertisement - Facebook, Twitter,
Instagram, Google

m Healthcare - Measurement data, e.g., next
generation sequencing (genomics) data

m Computer Vision & Speech recognition -
Autonomous cars, Virtual Assistants

m Industry - Preventive maintenance

m Business & Government - Data driven decision
making



Massive Datacenters for Big Data
- Applications

m We need massive amounts of data storage
m We need massive amounts of computing power

m We need to be able to do this very cheaply by using
economics of scale



Distributed Warehouse-scale
=~ Computing (WSC)

m The smallest unit of computation in Google scale is:
Warehouse full of computers

m [WSC]: Luiz André Barroso, Jimmy Clidaras, and
Urs Holzle: The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale
Machines, Second edition Morgan & Claypool
Publishers 2013

http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
m The WSC book says:

“...we must treat the datacenter itself as one
massive warehouse-scale computer (WSC).”


http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024

"* Hadoop - Linux of Big Data

m Hadoop = Open Source Distributed Operating
System Distribution for Big Data

m Based on “cloning” the Google architecture design

m Fault tolerant distributed filesystem: HDFS

m Batch processing for unstructured data: Hadoop
MapReduce (HDD), Apache Spark (RAM)

m Distributed SQL database queries for analytics:
Apache Hive, Spark SQL, Cloudera Impala, Presto

m Fault tolerant real-time distributed databases:
HBase, Kudu

m Machine learning libraries, text indexing & search,
and much more

m Hadoop and Spark operate warehouse scale
computers of Facebook, Netflix, Twitter, LinkedIn,



‘.‘ Example: Netflix Big Data Architecture

m Netflix is the largest Web based video service with
more that 1/3 peak Internet traffic in USA

m Netflix has a 60+ PB of data collected from all its
operations

m Company policy is to only do data driven business
decisions
m Data is used to:

m Recommend films

m Choose which content to purchase

m Improve user interface through A/B testing
m Do ad-hoc customer analytics, etc.



‘. Netflix Big Data Architecture
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»'* Netflix Data Collection
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Big Data approach to Business
- Intelligence

m Storing data is becoming cheaper every year

m The cost of storage of raw data is quite small for
most applications

m Just store all the raw data for future use

m Do “schema on read” - Make the data usable by
structuring it when needed

m Because the raw data has already been collected,
there is a history of data to analyze when an
opportunity arises

m Big Data platforms are needed to handle the vast
masses of (potentially unstructured) data

m The Gartner 3 Vs of Big Data: Volume, Variety,
Velocity



‘ Conclusions

m Artificial Intelligence applications require a Big Data
backend for data collection and analytics

m Hadoop is becoming the “Linux distribution for Big
Data”, including also other components such as
Apache Spark for main memory computing

m Hadoop consists of a number of interoperable open
source components

m Commercial support is available from commercial
vendors, e.g., Cloudera and MapR

m There is a move to hosted Big Data Applications:
Billing is done on data volume being processed
instead of number of computers used
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OUTLINE

Overview & Research Problems
Background & Problem Formulation
Simulation Experiments
Concurrent and Future Work
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OVERVIEW & RESEARCH PROBLEMS

generic.

 Applicable for increasing predictive model
interpretability, feature selection and root
cause analysis (e.g. what caused a paper

machine break?)
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(Granger) causality quantifies the extent to
which one time series is predictive of another.

» Most classical methods of estimating Granger
causality assume linear timeseries.

» More recent approaches of estimating Granger
causality for nonlinear timeseries are not
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BACKGROUND & PROBLEM FORMULATION

 Granger causality

« Cause is prior to effect.

« The cause makes unique changes in the effect (i.e.
contains unique info. about it).

. If a signal X "Granger-causes" (or "G-causes") a
naI Y, then past values of X should contain
ormatlon that helps predict ¥ above and beyond

the information contained in past values of Y alone.
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BACKGROUND & PROBLEM FORMULATION

* Nonlinear prediction models for Granger causality Y ()

estimation T .
. : : Y(t) = Y aY(t-1)+) bX(t-1)+e,
« We model nonlinear dynamics with Random Forest =1 =1
and LSTM.
« Lagged versions of predictor variables are used in
Random Forest.
« Lagged versions of predictor variables are inherently TSR £ 2%
considered in LSTM as lookback window. 00606
« How to quantify Granger causality? -

Time
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 Quantifying Granger causality estimation

BACKGROUND & PROBLEM FORMULATION

L
Y (t) YaY(t-1)+e

Accuracy difference between a model with or without vy ()
a lagged version of a predictor variable.

=1
L L
Y Y(t-1)+> b X(t-1)+ e,
=1 =1

But that means retraining our model /ag * Predictions
predictors times. Any better solution? [[foiluremormau]
What if we permute or apply noise on each predictor TF““““’—‘t
during prediction (evaluation) instead of fully Y € ogel
drOpplng |t? ' :I' "2 )| Training

Ix

{ Unseen Daoto J
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SIMULATION EXPERIMENTS

» Linear Vector Autoregressive Model fZ o
€Ty = y Tk T+ €4,
« Simulated VAR model with known sparse A4 matrix. e e
« Make prediction of each variable using all others as
predictors. f
« Permute each predictor variable and make prediction again. \\
« Calculate variable dependency based on reduction in ﬁ
accuracy (R2). Lk
True . RF LSTM k
r-lr- l... - -
T ", .
I... ||
Py, -, B
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SIMULATION EXPERIMENTS

* Nonlinear Lorenz96 Model

- Simulated data using Lorenz96 model with a given forcing e T iy
value. Such model is often used to model climate dynamics. &
 Make prediction of each variable using all others as
predictors.
- Permute each predictor variable and make prediction again.
« Calculate variable dependency based on reduction in ~
accuracy (R2). * A\
True . RF _ LSTM 7 /
", : _
., Ty W
., - SR
.
. . ."'-.
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CONCURRENT & FUTURE WORK

Experiment on real world

» Gene expression and regulation dynamics
 Human motion capture data
« Manufacturing process data (root cause analysis)

Adding numerical measures (AUROC and AUPR)
Comparison with regularization based methods
Other conditional permutation (noise addition) schemes

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI Matemaattis-luonnontieteellinen tiedekunta Causality Discovery / Tewodros Deneke

17/04/2019



Thank You!
Questions?
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Introduction Ko
Batch Plant Scheduling

Optimal allocation of a set of limited resources to tasks over time
Generic representations of batch processes: State Task Network, STN
(Kondili et al., 1993) or Resource Task Network, RTN (Pantelides,
1994)

State task Network (STN)
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Introduction Ko
« Batch Plant Scheduling

- Optimal allocation of a set of limited resources to tasks over time

- Generic representations of batch processes: State Task Network, STN
(Kondili et al., 1993) or Resource Task Network, RTN (Pantelides,
1994)

To be determined

Number, size, assignment, sequencing,
and timing of a set of tasks
consuming/producing a set of materials
during a given time horizon

State task Network (STN)

' Aalto University
School of Chemical

B Engineering



@Ol

Introduction Ko
« Batch Plant Scheduling

- Optimal allocation of a set of limited resources to tasks over time
- Generic representations of batch processes: State Task Network, STN
(Kondili et al., 1993) or Resource Task Network, RTN (Pantelides,

1994)

To be determined

Number, size, assignment, sequencing,
and timing of a set of tasks
consuming/producing a set of materials
during a given time horizon

Maximum profit
Minimum cost / makespan State task Network (STN)
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Time representation singpre

* Discrete-time
* The length of time slots is known beforehand (from minute to hours)

1 1 1 Il cee N I Il cee 1 i Il
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Known beforehand
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Time representation singpre

* Discrete-time
* The length of time slots is known beforehand (from minute to hours)

} 4 4 cee 3 3 cee ! 4 !
I ) ) ) ) lJ T 1
T, T, T, T, Tos Ta Toot Tirps T Try

Known beforehand

 Continuous-time
* The length of time slots is a continuous variable
« Task can be processed at any time of scheduling horizon

} aese Il 1 Il cee 1 1
U L L v A LJ L) L)
T T, Ts T4 Tht Tir2 Tyt Ty

NN

To be determined by optimization
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Scheduling formulation singpre

« We use STN to represent the problem
« To arrange task in units we define the concept of runs

J3

J2

Run =Time slot
Place holder for a task

Which task will be processed in a run

Dummy operation
J3r2

SR 3.r1 SR 3 r3

SRJZ,RZ SRJZ,R3

Changeover time

T
J1 LRy .r2
SR 1, r2

0

X;jr = liftaskiis processed
in unit j during run r
Vi ;- = batch size
L; j» = length / duration of a run

Novelty

Formulation has fewer continuous variables
and constraints

Easier to solve

A
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Scheduling formulation

Boolean Expression

oG

sSingpreo

Representation as
Linear Inequalities

Logical relation Comments
Logical OR
Logical AND
Implication Yi=h
. Yy if and only if >
Equivalence (V=T A TamY))
Exclusive OR Exactly one of the variables
is true

Yivhv..vY,

YiAYaA..AY,

ﬁY1VY2
(ﬂY|VY2)/\( ﬁY2VY|)

Yhvhv.vl,

iyt A2l
y=l
y=l
yi=1
-y 1+y2>1

i=n

Yyt

A
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Scheduling formulation

Allocation and processing time

E_,]. LRi,j,r =cp;jt+ VPi,jVi,j,r

Xijr
m]n < V,]T < max

no task
&f

V,}r = 0, Vi € 1]

LR[',}'I,- = 0, Vi € 1]

VjEJ],r€R

@l

\\\\-"fz?*
Slﬂgpl‘ o

Representation as

Logical relation Comments Boolean Expression Li .
inear Inequalities
Logical OR Yivhv..vY, iyt tye2l
y=l
Logical AND YiAhA..AY, vl
ol
Implication Y1=>h -Yvh L=y 221
. Yy if and only if Y, _
Equivalence (=T A Yo T,) (=NvH)A(=Yav)) YN
Exclusive OR Exactly on?solitl:e variables YKyt Pyl

A

Aalto University
School of Chemical
B Engineering



Scheduling formulation

Allocation and processing time

V

LRl]T_Cpl]+vpl]Vljl

- By replacing X;7 tasky _ Y.i Xi jr in convex hull reformulation of disjunction:

11r

mm < V < vmax

Ljr =

no task
Jr

Vljr = 0, Vi € l]

LR; i

LRUm

.=0, VlEIJ

VjEJ],r€R

in,j,r <1

lEIj

mll'l max
X’JTSI/l]r_v X

= cpijXijr Y VP iVijr

& .)),\((‘”

\\\\rr
SLQggprc

Representation as

Lj,r

Logical relation Comments Boolean Expression . "
Linear Inequalities
Logical OR Yivhv..vY, yityt. 2l
y=l
Logical AND YiAhA.AY, vl
ol
Implication Y=Y, -Yivh) -y 1ty2>1
. Yy ifand only if 1> _
Equivalence (Y>Ys A oY) (=Y vh)A(—=Yav]) Ve
Exclusive OR Exactly one of the variables AR 4 Pyl

is true

VjeJreR

Vi€el,j€],r€R

Viel, je],r€R

A
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Scheduling formulation Ko

 Sequencing and changeover constraints

- Run rin unit jalways starts after run r-7 in the same unit

Start time

of run rin \2 SR ;-1 +ZLR”T_1 VJjEJL,TER|q
unit ; ’ h

.'.EI}'

SRy 2SRy, 1+ ) LRy, V€JSj €0 #)),5 €S, €Rlpsy
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Scheduling formulation singpre

Mass balance and demand

F.'S,T = f:s_lnltlal + z prszvi,j,r' - z ZPESZ Vi,j,‘)"' VS E S,T' E R

r’<r1'51;’ JEJi r'sriel jE€Ji

fmin < F < fmax yseS,reR

Ji: Units that can process tasks i

IP : Tasks i that produce state s

IP : Tasks i that consume state s
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Scheduling formulation singpre

e Mass balance and demand

F.'S,T = Sinitial + z prszvi,j,r' - z ZPESZ Vi,j,‘)"' VS E S,T' E R

r’<r1'51;’ JEJi r'sriel jE€Ji

fmin < F < fmax yseS,reR

The amount of final states in last run should be
as large as demand d;

F,=>d;,, Vse€SM,r=|R]

Ji: Units that can process tasks i

I? : Tasks i that produce state s

IY : Tasks i that consume state s

' Aalto University
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Results for a complex and sthopre
comprehensive case study

Goal: Satisfy demand at final states S12 and S$13 with a minimum makespan

Demand:

intermediate

« Example 1: dg1; = 100 mu, dgq3 = 200 mu T e

Raw material

 Example 2: dgy, =930 mu, dg13 = 840 mu
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Results for a complex and stopre
comprehensive case study

Goal: Satisfy demand at final states S12 and S$13 with a minimum makespan

Demand:
 Example 1: dgq, = 100 mu, dg13 = 200 mu
 Example 2: dgy, =930 mu, dg13 = 840 mu

#runs  CPU(s) Bmary  Total Constramnts MILP ~ RMILP
variables variables (h) (h)
ds12 =100 mu, d513 =200 mu
Shaik and Floudas 8 0.81 88 458 730 13.36 11.25
Our 8 0.46 83 418 598 13.36 11.62
d512 =930 mu, d513 = 840 mu
Shaik and Floudas 29 ‘ 719.60 \ 319 1655 2704 51.82 49.92
Our 29 5.61 319 1510 2178 51.82 50.26

intermediate

states

Smaller problem size
Same number of time slots
Lower CPU time

Aalto University
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Continuous Processes (grade change sf?{gpm
optimization)

By slightly changing the generic model for batch plant scheduling, we can
easily account for grade change optimization to minimize makespan or

transition cost.

Week 1 Week 2

Week 3
\

Week 4
\

V|

3

min,{

i,

”max l

XH’
<V <7y

<R, £

max,l

i,

17l‘l‘lll‘l l-

X;mi
V,=0viel|,
LR, <h

Vr e erzl

SR, =SR,_{ +LR,_; Vr €ER|,»,

ZLRTSh

Aalto University
School of Chemical
B Engineering



: Qe
Continuous Processes (grade change singh:e

optimization)

* Problem very hard to solve with more than 8 grades and multiple due dates
« Data analytics (DA) and machine learning (ML) methods are used to cut off the feasible region
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Continuous Processes (grade change sigprs

optimization)

Problem very hard to solve with more than 8 grades and multiple due dates
Data analytics (DA) and machine learning (ML) methods are used to cut off the feasible region

Using historical data, DA and ML, we are able to generate heuristic constraints and omit large
number of connections between grades
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Continuous Processes (grade change singh:e
optimization)

Problem very hard to solve with more than 8 grades and multiple due dates
Data analytics (DA) and machine learning (ML) methods are used to cut off the feasible region

Using historical data, DA and ML, we are able to generate heuristic constraints and omit large
number of connections between grades

N

each vertex in graph /
[ _— representsagrade
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Continuous Processes (grade change singpre
optimization)

Heuristic approach: Fast but non-optimal

With a rolling horizon (RH) approach we can
improve the solution quality obtained from
the heuristic approach

Fix grades from
planning level
|
t1 12 t3 Fix grades from
planning level
|
Implement thepan=~ ——— ~¥————  — — — — —> )
fortl t2 t3 t4 Fix grades from
| planning level
Implement the plan e e e — N
t3 t4 t5

fortl
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Continuous Processes (grade change shgprs

optimization)

Heuristic approach: Fast but non-optimal .

With a rolling horizon (RH) approach we can i
improve the solution quality obtained from

the heuristic approach

Fix grades from
planning level
|
tl 12 t3 Fixgradesfrom  ;j—————=——=-—5
. Rolling phase —
planninglevel 1+~ "7 1
1
Implementthe plan =~ —m8 —— “——————— — — — — —: et
fortl t2 t3 t4 ix gra. es from
planning level
Implement the plan e e e — N
t3 t4 t5

fortl

Solve the full space model using Heuristic Eqs

|

H time horizon
|7 number of periods
n=

Fix the grade seqence for period  f,41,...004m1

Solve the MILP formulaton for period  fufut1,--Injz1

Has the optimal decision
implemented for period #,,,1,?

rrrrrr
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Grade change optimization (8 grades)

TABLE DEM(G,T) Demand in periods Tl (168 h) and T2 (336 h)

6000

s w0 4
7 500 20
Full Space Heuristic | Rolling Horizon T2 Fix | Rolling Horizon
T1 fix

Number of runs 13 13 13(6+7) 13(6+7)
CPU(s) 412,06 5.84 0.35 0.54
Binary variables 140 140 104 104
Total variables 499 499 352 352
Constraints 2954 3058 2502 2502
Objective Function | 148,70 1726 159.70 1487

Qe

sSingpreo

Aalto University
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Grade ch timizati 8 d et
rade change optimization (8 grades) siiprs
o | o | Ex
TABLE DEM(G,T) Demand in periods Tl (168 h) and T2 (336 h) ; —
pr Full space. mmm —
,-51 200  — -
G5 400 B o0 ETEA
G6 0 o I
G7 5000 000 @ s
= FAILVLY) SUUU :
DL-ML - =
Full Space Heuristic | Rolling Horizon T2 Fix | Rolling Horizon . —

T1 fix ——

Number of runs 13 13 13(6+7) Bes)y |0 e e e
a .

CPU (s) 412.06 5.84 0.35 0.54 of e -
Binary variables 140 140 104 104 e
Total variables 499 499 352 352 RH . ==
Constraints 2954 3058 2502 2502 ———
Objective Function ~ 148.70 172.6 159.70 1487 E—

Aalto University
School of Chemical

Al Engineering
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Grade change optimization (15 grades) siizpre

G13 Gi14

* Full space model not solved to optimality in 20000 CPU-s

« Number of possible sequences 15! (1,3*102)

Rolling Rolling Rolling Horizon | Rolling
Horizon T2 Fix | Horizon T2 Fix i Horizon T1
fix

Number of runs 18 (10+8) 10+8 11+8 11+8 11+9
CPU (s) 20000 251.95 39.68 80 0.8 1.17

Binary variables &[S 306 281 302 302 311
Total variables 645 645 606 645 645 672
Constraints 5191 3423 6659 7158 7116 7422

Objective 7300 7515.6 7300 7098.94 7098.94 6844 .4
Function

Aalto University
School of Chemical
B Engineering
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Grade change optimization (15 grades) siizpre

G13 Gi14

* Full space model not solved to optimality in 20000 CPU-s

« Number of possible sequences 15! (1,3*102)

Rolling Rolling Rolling Horizon | Rolling
Horizon T2 Fix | Horizon T2 Fix i Horizon T1
fix

Number of runs 18 (10+8) 10+8 11+8 11+8 11+9

CPU (s) 20000 251.95 39.68 80 0.8 1.17
Binary variables &[S 306 281 302 302 311
Total variables 645 645 606 645 645 672
Constraints 5191 3423 6659 7158 7116 7422

Objective 7300 7515.6 7300 7098.94 7098.94 6844 .4
Function

Total CPU time by the algorithm: 373 s

Aalto University
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Grade change optimization (15 grades) siizpre

G13 Gi14

* Full space model not solved to optimality in 20000 CPU-s

« Number of possible sequences 15! (1,3*102)

Rolling Rolling Rolling Horizon | Rolling
Horizon T2 Fix | Horizon T2 Fix i Horizon T1
fix

Number of runs 18 (10+8) 10+8 11+8 11+8 11+9
CPU (s) 20000 251.95 39.68 80 0.8 1.17
Binary variables &[S 306 281 302 302 311
Total variables 645 645 606 645 645 672
Constraints 5191 3423 6659 7158 7116 7422

Objective 7300 7515.6 7300 7098.94 7098.94 6844 .4
Function

Solution quality improved by 6%

Aalto University
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Conclusions and future directions singp:e

« Mathematical model formulation has a big impact on the solution
efficiency

New model for batch plant scheduling is faster than state-of-the-art models in
the literature

« DA and ML methods can support the solution of scheduling
problems even for short term horizons

Future work:
« Extending the model using the Resource-Task Network

« Applying DA and ML for other parameters (not just for transition time
or -cost) and for more complex scheduling optimization problem

Aalto University
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