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Big Data

Seagate sponsored IDC study estimates the Global
Datasphere to be 33 Zettabytes (33 000 000 000
TB) in 2018 and to grow to 175 Zettabytes by 2025
Data comes from: Video, sensor data, Internet
sites, social media, AI Applications, healthcare, . . .
For example Netflix is collecting 1 PB of data per
month from its video service user behaviour, total
data warehouse 60+ PB
According to Cisco, Internet traffic volume is
growing 30% per year, while Big Data storage is
growing 51% per year



Some Example Big Data Applications

Web Search - Google, Bing
Video Streaming and Recommendation - Netflix,
Youtube
Social Media & Advertisement - Facebook, Twitter,
Instagram, Google
Healthcare - Measurement data, e.g., next
generation sequencing (genomics) data
Computer Vision & Speech recognition -
Autonomous cars, Virtual Assistants
Industry - Preventive maintenance
Business & Government - Data driven decision
making



Massive Datacenters for Big Data
Applications

We need massive amounts of data storage
We need massive amounts of computing power
We need to be able to do this very cheaply by using
economics of scale



Distributed Warehouse-scale
Computing (WSC)

The smallest unit of computation in Google scale is:
Warehouse full of computers
[WSC]: Luiz André Barroso, Jimmy Clidaras, and
Urs Hölzle: The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale
Machines, Second edition Morgan & Claypool
Publishers 2013
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024

The WSC book says:
“. . . we must treat the datacenter itself as one
massive warehouse-scale computer (WSC).”

http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024


Hadoop - Linux of Big Data

Hadoop = Open Source Distributed Operating
System Distribution for Big Data

Based on “cloning” the Google architecture design
Fault tolerant distributed filesystem: HDFS
Batch processing for unstructured data: Hadoop
MapReduce (HDD), Apache Spark (RAM)
Distributed SQL database queries for analytics:
Apache Hive, Spark SQL, Cloudera Impala, Presto
Fault tolerant real-time distributed databases:
HBase, Kudu
Machine learning libraries, text indexing & search,
and much more

Hadoop and Spark operate warehouse scale
computers of Facebook, Netflix, Twitter, LinkedIn,
. . .



Example: Netflix Big Data Architecture

Netflix is the largest Web based video service with
more that 1/3 peak Internet traffic in USA
Netflix has a 60+ PB of data collected from all its
operations
Company policy is to only do data driven business
decisions
Data is used to:

Recommend films
Choose which content to purchase
Improve user interface through A/B testing
Do ad-hoc customer analytics, etc.



Netflix Big Data Architecture



Netflix Data Collection



Big Data approach to Business
Intelligence

Storing data is becoming cheaper every year
The cost of storage of raw data is quite small for
most applications
Just store all the raw data for future use
Do “schema on read” - Make the data usable by
structuring it when needed
Because the raw data has already been collected,
there is a history of data to analyze when an
opportunity arises
Big Data platforms are needed to handle the vast
masses of (potentially unstructured) data
The Gartner 3 Vs of Big Data: Volume, Variety,
Velocity



Conclusions

Artificial Intelligence applications require a Big Data
backend for data collection and analytics
Hadoop is becoming the “Linux distribution for Big
Data”, including also other components such as
Apache Spark for main memory computing
Hadoop consists of a number of interoperable open
source components
Commercial support is available from commercial
vendors, e.g., Cloudera and MapR
There is a move to hosted Big Data Applications:
Billing is done on data volume being processed
instead of number of computers used
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Matemaattis-luonnontieteellinen tiedekunta

• (Granger) causality quantifies the extent to 
which one time series is predictive of another. 

• Most classical methods of estimating Granger 
causality assume linear timeseries.

• More recent approaches of estimating Granger 
causality for nonlinear timeseries are not 
generic.

• Applicable for increasing predictive model 
interpretability, feature selection and root 
cause analysis (e.g. what caused a paper 
machine break?)
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OVERVIEW & RESEARCH PROBLEMS



Matemaattis-luonnontieteellinen tiedekunta

• Granger causality

• Cause is prior to effect.

• The cause makes unique changes in the effect (i.e. 
contains unique info. about it).

• If a signal X "Granger-causes" (or "G-causes") a 
signal Y, then past values of X should contain 
information that helps predict Y above and beyond 
the information contained in past values of Y alone.
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Matemaattis-luonnontieteellinen tiedekunta

• Nonlinear prediction models for Granger causality 
estimation

• We model nonlinear dynamics with Random Forest 
and LSTM.

• Lagged versions of predictor variables are used in 
Random Forest.

• Lagged versions of predictor variables are inherently 
considered in LSTM as lookback window.

• How to quantify Granger causality? 
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Matemaattis-luonnontieteellinen tiedekunta

• Quantifying Granger causality estimation

• Accuracy difference between a model with or without 
a lagged version of a predictor variable.

• But that means retraining our model lag * 
predictors times. Any better solution?   

• What if we permute or apply noise on each predictor 
during prediction (evaluation) instead of fully 
dropping it?
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Matemaattis-luonnontieteellinen tiedekunta

• Linear Vector Autoregressive Model 

• Simulated VAR model with known sparse A matrix.

• Make prediction of each variable using all others as 
predictors.

• Permute each predictor variable and make prediction again. 

• Calculate variable dependency based on reduction in 
accuracy (R2).
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SIMULATION EXPERIMENTS

True LSTMRF



Matemaattis-luonnontieteellinen tiedekunta

• Nonlinear Lorenz96 Model 

• Simulated data using Lorenz96 model with a given forcing 
value. Such model is often used to model climate dynamics. 

• Make prediction of each variable using all others as 
predictors.

• Permute each predictor variable and make prediction again. 

• Calculate variable dependency based on reduction in 
accuracy (R2).  
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SIMULATION EXPERIMENTS

True RF LSTM



Matemaattis-luonnontieteellinen tiedekunta

• Experiment on real world

• Gene expression and regulation dynamics

• Human motion capture data

• Manufacturing process data (root cause analysis)

• Adding numerical measures (AUROC and AUPR)

• Comparison with regularization based methods 

• Other conditional permutation (noise addition) schemes  
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CONCURRENT & FUTURE WORK
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Thank You!

Questions?
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• Discrete-time
• The length of time slots is known beforehand (from minute to hours)

T1 T2 T3 T4 Tn-1 Tn Tn+1 T|T|T|T|-1T|T|-2

... ...

Known beforehand

Time representation



• Discrete-time
• The length of time slots is known beforehand (from minute to hours)

• Continuous-time
• The length of time slots is a continuous variable
• Task can be processed at any time of scheduling horizon

T1 T2 T3 T4 Tn-1 Tn Tn+1 T|T|T|T|-1T|T|-2

... ...

To be determined by optimization

T1 T2 T3 T4 Tn-1 Tn Tn+1 T|T|T|T|-1T|T|-2

... ...

Known beforehand

Time representation



• We use STN to represent the problem
• To arrange task in units we define the concept of runs

J1

J3

J2

0 hmax

SRJ1,R2

SRJ2,R2

SRJ3,R1 SRJ3,R3

Dummy operation
J3R2

SRJ2,R3

LRI1,J1,R1 LRI4,J1,R2

LRI2,J2,R3LRI2,J2,R2

LRI3,J3,R3LRI3,J3,R1

Changeover time

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑟𝑟 = 1 if task i is processed
in unit j during run r

𝑉𝑉𝑖𝑖,𝑗𝑗,𝑟𝑟 = batch size
𝐿𝐿𝑖𝑖,𝑗𝑗,𝑟𝑟 = length / duration of a run

• Formulation has fewer continuous variables 
and constraints

• Easier to solve

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍

Scheduling formulation



Scheduling formulation



• Allocation and processing time

Scheduling formulation



• Allocation and processing time

�
𝑖𝑖∈𝐼𝐼𝑗𝑗

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑟𝑟 ≤ 1 , ∀ 𝑗𝑗 ∈ 𝐽𝐽, 𝑟𝑟 ∈ 𝑅𝑅

𝑣𝑣𝑖𝑖,𝑗𝑗min𝑋𝑋𝑖𝑖,𝑗𝑗,𝑟𝑟 ≤ 𝑉𝑉𝑖𝑖,𝑗𝑗,𝑟𝑟 ≤ 𝑣𝑣𝑖𝑖,𝑗𝑗max𝑋𝑋𝑖𝑖,𝑗𝑗,𝑟𝑟 ∀𝑖𝑖 ∈ 𝐼𝐼𝑗𝑗 , 𝑗𝑗 ∈ 𝐽𝐽, 𝑟𝑟 ∈ 𝑅𝑅

𝐿𝐿𝑅𝑅𝑖𝑖,𝑗𝑗,𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗𝑋𝑋𝑖𝑖,𝑗𝑗,𝑟𝑟 + 𝑣𝑣𝑐𝑐𝑖𝑖,𝑗𝑗𝑉𝑉𝑖𝑖,𝑗𝑗,𝑟𝑟 ∀𝑖𝑖 ∈ 𝐼𝐼𝑗𝑗 𝑗𝑗 ∈ 𝐽𝐽, 𝑟𝑟 ∈ 𝑅𝑅

• By replacing 𝑋𝑋𝑗𝑗,𝑟𝑟
no task1 − ∑𝑖𝑖 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑟𝑟 in convex hull reformulation of disjunction:

Scheduling formulation



• Sequencing and changeover constraints

- Run r in unit j always starts after run r-1 in the same unit

Scheduling formulation

Start time 
of run r in 
unit j



• Mass balance and demand
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𝑝𝑝 ∶ Tasks 𝑖𝑖 that consume state 𝑠𝑠

Scheduling formulation



• Mass balance and demand
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The amount of final states in last run should be 
as large as demand 𝑑𝑑𝑠𝑠

Scheduling formulation
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Goal: Satisfy demand at final states S12 and S13 with a minimum makespan 

Demand:
• Example 1: 𝒅𝒅𝐒𝐒𝐒𝐒𝐒𝐒 = 100 mu, 𝒅𝒅𝐒𝐒𝐒𝐒𝐒𝐒 = 200 mu
• Example 2: 𝒅𝒅𝐒𝐒𝐒𝐒𝐒𝐒 = 930 mu, 𝒅𝒅𝐒𝐒𝐒𝐒𝐒𝐒 = 840 mu

Results for a complex and 
comprehensive case study



• Smaller problem size
• Same number of time slots
• Lower CPU time
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Continuous Processes (grade change 
optimization)



• Problem very hard to solve with more than 8 grades and multiple due dates 
• Data analytics (DA) and machine learning (ML) methods are used to cut off the feasible region 

Continuous Processes (grade change 
optimization)
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• Problem very hard to solve with more than 8 grades and multiple due dates 
• Data analytics (DA) and machine learning (ML) methods are used to cut off the feasible region 
• Using  historical data, DA and ML, we are able to generate heuristic constraints and omit large 

number of connections between grades

DA-ML

Continuous Processes (grade change 
optimization)
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• Problem very hard to solve with more than 8 grades and multiple due dates 
• Data analytics (DA) and machine learning (ML) methods are used to cut off the feasible region 
• Using  historical data, DA and ML, we are able to generate heuristic constraints and omit large 

number of connections between grades

DA-ML

Continuous Processes (grade change 
optimization)

each vertex in graph 
represents a grade



Fix grades from 
planning level
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Continuous Processes (grade change 
optimization)

• Heuristic approach: Fast but non-optimal
• With a rolling horizon (RH) approach we can 

improve  the solution quality obtained from 
the heuristic approach
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Grade change optimization (8 grades)
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Full Space Heuristic Rolling 
Horizon T2 Fix

Rolling 
Horizon T2 Fix

Rolling Horizon 
T1 fix 

Rolling 
Horizon T1 
fix 

Number of runs 18 18 (10+8) 10+8 11+8 11+8 11+9
CPU (s) 20000 251.95 39.68 80 0.8 1.17
Binary variables 306 306 281 302 302 311
Total variables 645 645 606 645 645 672
Constraints 5191 3423 6659 7158 7116 7422
Objective 
Function

7300 7515.6 7300 7098.94 7098.94 6844.4

Grade change optimization (15 grades)

• Full space model not solved to optimality in 20000 CPU-s 
• Number of possible sequences 15!  (1,3*1012)
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• Mathematical model formulation has a big impact on the solution 
efficiency

• New model for batch plant scheduling is faster than state-of-the-art models in 
the literature 

• DA and ML methods can support the solution of scheduling 
problems even for short term horizons

Future work:
• Extending the model using the Resource-Task Network 
• Applying DA and ML for other parameters (not just for transition time 

or -cost) and for more complex scheduling optimization problem

Conclusions and future directions



Thank you for 
your attention!


